
Theor Chim Acta (1987) 72:149-173

�9 Springer-Verlag 1987

Strategies to vectorize conventional SCF-CI algorithms

Nobuhiro Kosugi

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan

(Received September 3, 1986, revised June 26/Accepted July 3, 1987)

Recent high-performance computers, especially supercomputers, achieve very
high-speed operations but bring about serious I /O problems in quantum
chemical computations. Strategies to vectorize conventional SCF-CI
algorithms are discussed relating to the I /O problems. The conventional
SCF-CI algorithm which is proposed here reduces I /O processing by eliminat-
ing all sorting routines and redundant integral files and generates directly
nonzero and nonredundant PK integrals with a vectorizable canonically-
ordered list. The new implementation has been undertaken and successfully
realized as a program system named GSCF3. The vector to scalar acceleration
rate of GSCF3 on the HITAC S-810 are as follows: 2 . 5 - 5 in the AO integral
evaluation, 5 - 1 2 in the SCF calculation, 1 5 - 3 0 in the four-index integral
transformation, 1 0 - 2 0 in the CI matrix diagonalization, and overall 5 - 1 0
through SCF-CI.

Key words: Conventional S C F - C I - - I / O bot t leneck--Vector izat ion of
indirect addressing - - Vectorizable canonically-ordered PK integrals - - Four-
index transformation

1. Introduction

The appearance of supercomputers (vector processors) has brought rapid growth
of computational capabilities. Experience in adaptation of quantum chemical
computations to the supercomputers is being accumulated in the quantum
chemistry community [1-5]. The characteristics of these machines differ so much
from those of scalar machines that a thorough rethinking of the computational
strategies is necessary. At this time the capabilities of compilers converting
effective scalar codes to effective vector codes are still severely limited. It is still

150 N. Kosugi

a crucial decision for quantum chemists developing highly-polished scalar codes
whether or not to completely rewrite computer codes for supercomputers.

Although recent computers, vector or scalar, attain very high-speed operations
and enable very large-scale computations, handling of large data files is more
cumbersome. It is because the word "speed" means CPU speed of arithmetic
and logical operations and memory speed of cache memory (register) and main
storage (MS, central or "core" memory), but does not mean channel speed in
data transfer between MS and auxiliary storage (external disk systems) [1-3].
That is, algorithms which are designed with a great effort to well balance CPU
and I/O times on today's computers will always be I/O bound on tomorrow's
computers.

There are some algorithms proposed to avoid the serious I/O problems in quantum
chemical computations: direct SCF [6] and direct CI [7]. In the direct SCF
approach [6], only the non-negligible two-electron integrals to the Fock matrix
(or to changes in the Fock matrix) are re-evaluated in every SCF iteration. This
approach has been primarily conceived for minicomputers with highly sophisti-
cated CPUs but with much less developed I/O systems. It also enables very
large-scale calculations using very extensive basis sets in which the storage of
integrals in the conventional two-step (integral and SCF) procedure is prohibitive
at any existing computer system. The same situation occurs in conventional CI
calculations [7] as in conventional SCF calculations. The corresponding CPU
bound and I/O bound steps are Hamiltonian matrix generation and iteratively
solved matrix diagonalization, respectively. In the direct C! method, wavefunc-
tions are constructed directly from molecular two-electron integrals without
explicitly generating an intermediate Hamiltonian matrix. The above "direct"
approaches have, however, several weak aspects. The direct SCF approach [6]
is completely CPU-bound; therefore, the CPU requirement for the integral step
is usually much larger than that for the SCF step (per iteration) and its effectiveness
is heavily dependent on CPU and !/O performances inherent in available com-
puter systems. In contrast, whatever type of computer we are using, the direct
C! algorithm [7] is most promising. However, reduction of the configuration list
based on individual configuration selection by perturbation theories on energy
contributions and by restriction schemes on electron configuration types is not
easily attained in the direct CI method without destroying the simple and
inherently efficient matrix-multiplication structure.

There are some bright outlooks for hardware and software technology to reduce
or eliminate disk I/O [5]. The latest semiconductor technology has resulted in
high-performance computer systems, vector or scalar, with huge main storage
(MS, e.g. 2 GB (giga byte) in the CRAY 2) and huge storage (e.g. 3 GB in
the HITAC S-810/model 20) connected with MS through high-speed channels
(e.g. 1.3 GB/s in the NEC SX-2). The latter is called Solid State Device or "Disk"
(SSD) or Extended Storage (ES). Then, I/O times can be easily reduced or
eliminated through use of greater amounts of MS and/or ES instead of magnetic
disk systems, though the savings depend on how critical the memory resources

Strategies to vectorize conventional SCF-C1 algorithms 151

are. Another approach to reduce the amount of I /O time is to perform the disk
I /O concurrently with either computations or other I/Os. The former is asyn-
chronous disk 1/O attained by rewriting so as to use double buffering, but is not
effective to heavily I /O-bound jobs. The latter is parallel disk I /O (or disk stripe)
which is attained by splitting a data file into several pieces on separate I /O
channels and by processing the I /O channels concurrently. The parallel I /O
technique can almost cope with heavily I /O-bound jobs, though total speed of
the I /O channels is at most 50 MB/s (- 3 MB/s • 16 parallel in the HITAC S-810
and M-680H) at the present stage of technology.

In the present work, a new implementation of"conventional" SCF-CI algorithms
is proposed for adaptation to recent high-performance computer systems,
especially to supercomputers. In Sect. 2, a basic design of the "new" conventional
SCF-CI approach proposed is discussed relating to 1/O problems brought about
by the recent computers. In Sects. 3 and 5, vectorization of AO integral evaluation,
Fock matrix generation and Hamiltonian matrix diagonalization are considered.
In Sects. 4 and 6, how to arrange two-electron AO integrals into a canonically-
ordered PK supermatrix and how to transform the four-index AO integrals to
the MO integrals are proposed so as to satisfy the 'new' conventional SCF-CI
formalism. In the last section, typical timings of the present algorithms on HITAC
S-810 are shown and discussed. The computer program used has been under
development for about a decade [8] and the current implementation is named
GSCF3 [9].

2. A "new" conventional SCF-CI algorithm

A typical example of flow charts for conventional SCF-CI programs is shown in
Fig. 1. In the integral program INT, two-electron integral g.oqrs's are evaluated
over contracted Gaussian-type basis functions (atomic orbitals, AOs) and are
stored as the g file in external storage: To efficiently perform SCF calculations,
the PK integral file is obtained by sorting and preprocessing an unordered AO
integral list (the g file) [10]. Then, the PK file is read one or more times at every
SCF iteration.

To proceed beyond Hartree-Fock calculations, we have to obtain two-electron

Fig. 1. A typical example of flow charts for ~ ~ ' J
conventional SCF-CI programs, where circles ~
and rectangles denote data files and program
parts, respectively I

@

- - i

152 N. Kosugi

integrals V~jkt's over molecular orbitals X~'s (MOs) from the AO integrals Gpqrs'S
through the following four partial summations:

(I) Zpqri = ~'s OpqrsXis
(II) Jpqji ~ ~r Zpqri Xjr
(III) Upkji= •qJpqji Xkq
(Iv) v kj, = xp vpkj, x , .

In the current approaches [11], the four-index integral transformation consists
of two steps. The first t.wo-index transformation (MOTR1) Gmr , ~ Tmr ~ ~ JmJ~
(rs ~ j i) for all p, q, i and j is followed by the second two-index transformation
(MOTR2) Jpaji~ Upkj~ Vtkj~ (pq~ Ik) [11]. In advance of execution of MOTR1,
we have to sort the unordered AO integral list of the g file into an ordered list
suitable for MOTR1. In the resultant integrals Opq(rS) stored in the O integral
file, pq is fixed and rs runs over AOs. Between MOTR1 and MOTR2, all the
half-transformed integrals Jm)~'s are stored in external storage and transposed by
sorting of Jpq(ij) for all 0" with fixed pq to J~j(pq) for all pq with fixed (]. Using
the MO integrals V~jjs, Hamiltonian matrix elements are constructed in the H
file by the HMAT program. Finally, the Hamiltonian matrix is diagonalized to
obtain eigensolutions. Matrix diagonalization problems are iteratively solved and
the H file is read once at every iteration [12].

Through the conventional SCF-CI algorithms, we have to handle as many as
seven huge integral files, though no more than two such files ever need to exist
at the same time. The number of elements in the AO integral files, g, PK and G,
is Nao4/8 where Nao denotes the number of basis functions in SCF (AOs), The
number of elements in the intermediate files, Jpq and Jij, and in the MO integral
file, V, are Nao2Nrno2/4 and Nmo4/8, respectively, where Nmo denotes the
number of basis functions in CI (MOs). The number of elements in the H file
is Nci2/2 where Nci denotes the dimension of the Hamiltonian matrix. Ideally
the Jpq and Jij files and two of the three AO integral files are unnecessary and
should be eliminated. Cumbersome file handlings and huge storage requirements
by them come from the three sorting routines, SORT. In order to avoid I / 0
bottlenecks which would be encountered in recent high-speed computers, we
have to re-design a new "conventional" SCF-CI algorithm in which all the sorting
routines are eliminated.

An ideal "conventional" SCF-CI algorithm is shown in Fig. 2, where we have
only to handle three disk files of AO integrals (the PK file), MO integrals (the
V file) and Hamiltonian matrix elements (the H file). In the following sections,
how to realize this "new" conventional SCF-CI algorithm is described and
discussed from the viewpoint of vectorization.

Fig. 2. A new algorithm for the conven-
tional SCF-CI calculation proposed to
overcome I/O bottlenecks brought
about by recent "high-speed" computers

Strategies to vectorize conventional SCF-C1 algorithms i53

3. Veetorization of AO integral evaluation

In this section, some considerations on the "extrinsic" vectorization algorithm
for the AO integral evaluation by the Daresbury group (Saunders et al.) [15, 16]
are described.

The Pople-Hehre method [13] and the Gauss-Rys method [14] are widely
employed for integration of s and p functions and of s, p and Cartesi~m d
functions, respectively, using the batch (or shell) processing algorithm [13].
Saunders et al. have proposed the "extrinsic" vectorization algorithm [15, 16],
in which the vector length of innermost loops is MUMAX, the number of nonzero
integrals with different primitive combinations in a given integral batch. The
"extrinsic" algorithm does not work so efficiently in vectorization of the Pople-
Hehre method because of laborious preprocessing and FORTRAN overhead for
vectorization (initializing DO loops).

On the other hand, in the Gauss-Rys method, further refinements for the
"extrinsic" vectorization can be achieved over the original algorithm [15, 16]. In
Figs. 3 and 4, the "orthodox" and the vector-adapted kernels of the Gauss-Rys
code are shown, respectively, where N is the number of the Gauss-Rys quadrature
points, and NINT the dimension of one integral batch (the number of AO
integrals to be evaluated simultaneously in one integral batch). In the orthodox
code (3a), there are two algorithms shown; one is a simultaneous multiplication
among the auxiliary integrals Xi, Yi and Zi, the other is a two-step multiplication.
The latter has an advantage when M I N T < NINT. For example, when MINT =
1296, N I N T = 10000, and all the basis functions belong to spd shells, the number
of multiplications in the two-step algorithm (11 296) is about half of that in the
simultaneous algorithm (20 000). Such a saving is also possible in the other
orthodox code (3b) and the vector codes (4a) and (4b). It should be noted that
main storage requirements can be reduced by replacing all the vectors of
dimension 10 000 with those of dimension 1296 if neither pd nor spd shells are
accepted (if the restriction of equal s, p and d exponents is removed).

There is another orthodox code shown in Fig. 3b, which can reduce main
storage requirement of TEMP drastically from 10 000 to only 5 (N = 5 when all
the functions are of d, pd or spd type). In Figs. 4a, b, the orthodox codes (3a)
and (3b) are modified for vectorization, respectively, where # denotes the number
of auxiliary integrals with different primitive combinations to be evaluated concur-
rently; in the code (4b), auxiliary integrals for different Gauss-Rys quadrature
points as well as different primitive combinations are evaluated concurrently,
though some additional preprocessings are needed for achieving this concurrency.
The description of the codes in Fig. 4 is simplified for presentation; it is of course
that DO 300 must account for the remainder using vector length less than # in
the last loop. The case that # equals M U M A X (or, sometimes, the optimal
vector length depending on computer systems) is ideal but the maximum limit
of # is dependent on available main storage. In the code (4b), # can be set
larger than in the code (4a) because of less main storage requirements, and what
is still better, the vector length of innermost loops can be set relatively long even

154 N. Kosugi

a Orthodox code

dimension TEMP(10000), X(81), Y(81), Z(81), COEF(256)
(XY(1296))

NZ(IO000), NC(IO000), G(IO000)
NX(IO000), NY(IO000)

or MX(1296), MY(1296), MXY(1296), NXY(10000)

DO 300 mu=I, MUMAX

DO 100 i= l ,N

(obtain Xi, Yi, Zi)

DO 110 ng=I, NINT
110 TEMP(ng)-TEMP(ng)+X(NX(ng))*Y(NY(ng))*Z(NZ(ng))

or
DO 111 mg=I, MINT

111 XY(MXY(mg)) = X(MX(mg))*Y(MY(mg))
DO 112 ng=I, NINT

112 TEMP(ng) = TEMP(ng)+XY(NXY(ng))*Z(NZ(ng))

100 CONTINUE

DO 200 ng=I, NINT
200 G(ng) =G(ng)+COEF(NC(ng))*TEMP(ng)

300 CONTINUE

b Another orthodox code (an example when N=5)

dimension : TEMPi, Xi(81),Yi(81),Zi(81) (XYi(1296)) for all i

DO 300 mu=I, MUMAX

(obtain Xi, Yi, Zi sequentially for all i)

DO 200 ng=I, NINT

(obtain TEMPi=Xi(NX(ng))*Yi(NY(ng))*Zi(NZ(ng)) for alli)
or XYi(NXY(ng))*Zi(NZ(ng))

200 G(ng)=G(ng)+COEF(NC(ng))*(TEMPI+TEMP2+TEMP3+TEMP4+TEMP5)

300 CONTINUE

Fig. 3. Some modifications of the "orthodox" Gauss-Rys codes

when M U M A X is ra ther small , that is, basis funct ions are low con t rac ted or
par t ly uncont rac ted . W h e n all the basis funct ions in one in tegra l ba tch are
uncon t rac ted , we should emp loy the code (3a) or (3b). Both the codes (3a) and
(3b) in which indirect add res s ing with the index vectors is used in the innermos t
loops are vector ized; however , thei r vec tor iza t ion is not so efficient or, somet imes ,
even coun te r -p roduc t ive because of f requent access to the same address (memory
bank conflicts).

4. Direct generation of a canonically-ordered PK integral file

To sat isfy the " n e w " conven t iona l S C F - C I formal i sm, a canon ica l l y -o rde red PK
in tegral (supermat r ix) file [17] is genera ted di rec t ly by the AO integra l eva lua t ion

Strategies to vectorize conventional SCF-C1 algorithms 155

a Vector-adapted code for (3a)

dimension : TEMP(#, 10000), X(#, 81), Y(#, 81), Z(#, 81), COEF(#, 256)
(XY(#, 1296))

DO 300 mu=I, MUMAX,#

DO 100 i=l ,N

(obtain Xi, Yi, Zi concurrently for # primitives)

DO 110 ng=I, NINT
DO 110 rot=l,#

110 TEMP(mt, ng)=TEMP(mt, ng)+X(mt, NX(ng))*Y(mt, NY(ng))*Z(mt, NZ(ng))
or XY(mt, NXY(ng))*Z(mt, NZ(ng))

100 CONTINUE

DO 200 ng=I, NINT
DO 200 rot=l,#

200 G(ng)=G(ng)+COEF(mt, NC(ng))*TEMP(mt, ng)

300 CONTINUE

b Vector-adapted code for (3b)

dimension : TEMP(5*#), X(5*#, 81), Y(5*#, 81), Z(5*#, 81), COEF(#, 256)
(XY(5.#,1296))

DO 300 mu=I, MUMAX,#

(obtain Xi, Yi, Zi concurrently for # primitives & all i)

DO 200 ng=I, NINT
DO 110 nt=l,N*#

110 TEMP(nt)=X(nt, NX(ng))*Y(nt, NY(ng))*Z(nt, NZ(ng))
or XY(nt, NXY(ng))*Z(nt, NZ(ng))

DO 200 mt=l ,#
200 G(ng)=G(ng)+COEF(mt, NC(ng))*(TEMP(5*mt-4)

* +TEMP(5*mt-3)+TEMP(5.mt-2)
* +TEMP(5*mt- 1)+TEMP(5*mt))

300 CONTINUE

Fig. 4. Vector-adapted Gauss-Rys codes

program. First o f all, to simplify its algori thm for presentation, an algorithm to
evaluate AO integrals not batch-wise but individually is shown in Fig. 5, where
indices p, q, r and s denote AOs, Nao the number o f AOs, and rs a canonically-
ordered index [r, s] for packed symmetric matrices ([a, b] = [b, a] = a (a - 1) /2+b,
a>__b). The quadruple AO loop structure, what is called Meyer 's loop structure
(as quoted in ref. [18]), generates non redundan t AO integrals Gpqrs , Gpsqr and
@rq~ sequentially, where their trivial and non-trivial redundancies are checked
by the nature o f identities between the four labels p, q, r and s and by whether
or not a symmetry opera t ion maps the four-AO label {pqrs} (p>-q>_r>-s) into a
larger /smal ler label {p'q'r's'} (rearranged in descending order), respectively. The
check whether or not {pqrs}<{p'q'r's'} can already be per formed part ly in the
outer loops (p<p', {pq}<{p'q'}, {pqr}<{p'q'r'}) before all the indices p, q, r and

156 N. Kosugi

Fig. 5.

DO 100 p=l , Nao

DO 110 q = l , p
DO 110 r = l , q
DO 110 s = l , r

(symmetry check for the AO quadruplet {pqrs})

evaluate Gpqrs
evaluate Gpsqr if q.NE.r or (p.NE.q and r.NE.s) [case 1]
evaluate Gprqs if q.NE.r and p.NE.q and r.NE.s [case 2]
Kp(q, rs)=Gpsqr+Gprqs
Pp (q, rs)=Gpqrs-Kp(q, rs)/4
Kp(s, qr)=Gprqs+Gpqrs [case 1]
Pp (s, qr)=Gpsqr-Kp(s, qr)/4 [casd 1]
Kp(r, qs)=Gpsqr+Gpqrs [case 2]
Pp (r, qs)=Gprqs-Kp(r, qs)/4 [case 2]

110 CONTINUE

(Here, we have PK integrals Pp(q, rs) & Kp(q, rs)
in which q = l t op & rs.LE.pq)

DO 120 q = l , p

extract Ppq(rs) & Kpq(rs) from Pp(q, rs) & Kp(q, rs)

Npq=0
DO 121 rs=l ,pq
IF(.NOT.SYM(rs).or.ABS(Ppq(rs))+ABS(Kpq(rs)).LY.eps)
Npq=Npq+l
RS(Npq) =rs

121 CONTINUE

Mpq=Npq
DO 122 rs=l ,pq
F(SYM(rs).or.ABS(Ppq(rs))+ABS(Kpq(rs)).LT.epa) GO
Mpq=Mpq+l
RS(Mpq)=rs

122 CONTINUE

IF(.NOT.SYM(pq)) Npq=0

write Npq, Mpq
write Ppq(RS(n)), RS(n), n=l , Mpq
write Kpq(RS(n)) , n=l , Mpq

120 CONTINUE

100 CONTINUE

SYM(rs) =.TRUE. if the r'th and s'th AOs belong to the same IR
(except that the same AO contributes to different IRs)

SYM(rs) =.FALSE. if not

Direct generation of a canonically-ordered PK integral file

GO

TO

TO

122

121

Strategies to vectorize conventional SCF-C1 algorithms 157

s are specified [18, 19]. Then, we can easily obtain PK integrals with non-
redundant AO combinations among p, q, r and s as shown in Fig. 5, where the
PK integrals must be divided by the number of symmetry operations which map
pqrs into itself according to the Dacre scheme [19, 20]. When the inner three
loops (DO 110) are completed for a specified p (DO 100), PK integrals PPqrs
and Kpqr, are all obtained under the conditions that p>_q, r, s and the labels p,
q, r and s are in canonical order (p>_q, r>-s, [p, q]>-[r, s]). We can pick up PK
integrals PPqrs and Kpqrs in which pq is fixed and rs runs from 1 to pq (if there
is no symmetry-redundancy). After checking whether or not any of the P and K
integral sums exceeds a given threshold (eps), we can store in external storage
only "nonzero" and nonredundant integrals with canonical indices RS at each
pq combination of AO indices. Mpq denotes the number of the "full" P and K
integrals to be stored for a specified pq combination, and Npq the number of
the "purged" PK integrals where both the p ' th and q'th AOs and both the r 'th
and s'th AOs are components of symmetry-adapted orbitals belonging t o the
same symmetry species (irreducible representation, IR), respectively, exclusive
of the case that the same AO contributes to different IRs. The purged PK integral
list is used in one-electron calculations (SCF) where one-electron operators (Fock
and Fock-like operators, one-electron density matrices) should be totally sym-
metric with respect to molecular symmetry. The full PK integral list must be
used in beyond-HF calculations where two-electron operators play an important
role. This purging is originally designed and very effective for the symmetry-
adapted PK integrals [15] and is also effective to the AO-based PK integrals as
has recently been demonstrated by Bair [21]. Only RS, Mpq and Npq are needed
as indexing information for the integral labels. In the algorithm as is shown in
Fig. 5, MS (main storage) of Nao 3 words is required for Pp and Kp when p = Nao;
in practice, we have only to have MS of Nao 2 words for Ppq and Kpq for a
specified q by storing Pp and Kp in a work file of Nao 3 words (at maximum).

An algorithm to evaluate AO integrals batch-wise is shown in Fig. 6, where Nshell
denotes the number of shells and indices P, Q, R and S denote labels of shells
[13]. Meyer's loop structure [18] is applied to the loop over shells. A shell with
a label P consists of AOs with AO labels p from pmin to pmax. Non-trivial
redundancy in the integral evaluation due to molecular symmetry can be checked
by the inequality relations between the original four-shell label {PQRS} and the
labels {P'Q'R'S'} (rearranged in descending order) subject to symmetry
operations within the framework of shell labels instead of AO labels. The check
whether or not {PQRS}<{P'Q'R'S'} can beforehand be performed partly in the
outer loops more cheaply than the check whether or not {pqrs}<{p'q'r's'} [19].
This shell structure is suited for use of the Dacre scheme [19, 20] to treat molecular
symmetry. The integral batch is classified beforehand according to the nature of
identities between the four shell labels as shown in Fig. 6. When the inner three
loops (DO 110) are completed within a given P shell (DO 100), we have PK
integrals Ppqrs and Kpqrs in which pq runs from [pmin, 1] to [pmax, pmax] and
rs<--pq. The inside of DO 120 is the same as in Fig. 5 except a difference that we
have to handle PK integrals with several p labels from pmin to pmax. This

158 N. Kosugi

DO 100 P=l, Nshell

DO 110 Q=I,P
DO 110 R=I,Q
DO 110 S=I ,R

AO members in a shell

P : p=pmin, pmax

Q: q=qmin, qmax
R : r =rmin, rmax
S :s =stain, smax

(symmetry check for the shell quadruplet {PQRS})

evaluate one integral batch,
which is classified according to the nature of identities
between the four shell labels P, Q, R and S as follows:

1 PQRS
2 PQRR & PPRS
3 PQQS
4 PQQQ & pPPS
5 PPQQ
6 PPPP

obtain one PK integral batch: P[PQRS] and K[PQRS]

110 CONTINUE

(Here, we have PK integrals P(pq, rs) & K(pq, rs),
in which pq=[pmin, 1] to [pmax, pmax] & rs.LE.pq)

DO 120 p=pmin, pmax
DO 120 q= l ,p

extract Ppq(rs) & Kpq(rs) from P(pq, rs) & K(pq, rs)

(the same as in Fig. 5)

120 CONTINUE

100 CONTINUE

Fig. 6. Batch-wise PK integral generation

difference requires greater external s torage for s toring the integrals in te rmedia te ly ,
for example , 10 Nao 3 words at m a x i m u m when P=Nshell and the P shell is an

spd shell (to ta l ly 10 funct ions) . In o rde r to reduce the external s torage require-
ments , we have only to ga ther d, pd and spd shells at the lower shell numbers
(labels) and s shells at the h igher ones; work space may be successful ly r educed
to Nao 3 words at m a x i m u m . Fur the rmore , we should e l imina te symmet r ica l ly
r e d u n d a n t rs pai rs at the lower pq pairs and ga ther n o n r e d u n d a n t integrals at
the h igher ones in o rde r to achieve en la rgement of average vec tor length Npq
and Mpq of ind i rec t address ing with the index vector RS. It is a cri t ical p rob l e m
in the fo l lowing steps, Fock matr ix genera t ion and M O integral (four - index)

t r ans fo rmat ion .

We now turn to cons ider which integral form of the three forms, G only, G and
K (GK) and PK, is the best in storing and comput ing . Table 1 shows relat ive

Strategies to vectorize conventional SCF-C1 algorithms 159

Table 1. The relative memory requirement for storing nonzero integrals and their indices in the cases
of dense and spatially-extended systems ~

Dense systems Extended systems

Integral Index Total Integral Index Total

G 3 3 6 1 1 2
P 3 3 6 3 3 6
K 3 3 6 2 2 4
G K 6 3 ~ 9 3 3 e~ 6

P K b 6 3 ~ 9 5 3 ~ 8

It is supposed that one integral Apqr, (A = G, P or K) and one index pair pq and rs need the same
memory unit (e.g. one word length); for example, three integrals (Gpqr~; Gpsq~; Gp~q,) and three index
pairs (pq and rs; ps and qr; pr and qs) are stored for one pqrs combination of G integrals in dense
systems, and one integral and one index pair are stored in extended ones
b See Figs. 5 and 6
~ The same index list is used for G and K or for P and K
d The different index lists are used for G and K

The index list for K can be included in that for P

memory requirements for storing nonzero integrals and their indices in the cases
of dense and spatially-extended systems. In dense systems, three integrals with
AO combinations of p, q, r and s are all nonzero (Qqr,, Gpsqr and Gprqs; Ppqrs,
Ppsqr and Pprqs; Kpqrs, Kpsqr and Kprqs). On the other hand, in spatially extended
systems [15], only one of the three G integrals (apqrs) is nonzero when there is
large overlap between p and q and between r and s but no (or near zero) overlap
between the other AO pairs; therefore, K;qr, = Gpsqr+ G;rqs = 0. It is needless to
say that storing G only is the best in memory requirement and I /O cost. In the
Fock matrix generation, we must obtain Coulomb and exchange matrices J and

Table 2. The relative operation number of additions and multiplications needed in obtaining
d, K and 2 J - K from G, P and K ~

File Dense Extended Vectorizable (O.K.)
structure systems systems Unvectorizable (x)

J G 6 2 O.K.
f G b 12 4 •

K ~K 6 4 O.K.
G b 18 6 O.K./x ~

2 J - K K d 12 6 O.K.

6 6 O.K.
G b 18 6 O.K. / • c

J & K G K d 12 6 O.K.

I P K 12 10 O.K.

a Operation numbers of index manipulations, e.g. unpacking, are not counted in the table
b The usual "purged" form, in which Gpqrs is purged when p and q (or r and s) belong
to different I.R.s, is not accepted for constructing the K matrix

c Vectorizable and unvectorizable for evaluations of J and K matrices, respectively
The G and K integrals are used for evaluations of J and K matrices, respectively

160 N. Kosugi

read Mpq
read Ppq, RS
read Kpq
DO 1 n=l , Mpq
Gpq(n) = Ppq(n) + 0.25*Kpq(n)

R(n) =indr(RS(n))
S(n) = RS(n)-R(n)*(R(n)- l) /2

IF(p .EQ. q
DO 2 n =1, Mpq

2

DO 3
IF(R(n)

3 IF(pq

Gpq(n) =Gpq(n)*0.5

then

endif
n=l , Mpq
.EQ. S(n) Gpq(n) =Gpq(n)*0.5
.EQ. RS(n) Gpq(n)=Gpq(n)*0.5

where indr(r*(r-1)/2+s)=r, if r.GE.s ; R(n).GE.S(n)

Fig. 7. How to obtain a canonically-ordered AO integrals G from the PK file

K and, in the closed-shell case, 2 J - K from one of the three integral files: "less
purged" G, "fully purged" G K or "fully purged" P K for the closed-shell and
dense systems. Storing of P only is the best in memory requirement, I /O cost
and use of the purging technique for Table 2 shows relative operation numbers
of additions and multiplications necessary in constructing J, K and 2 J - K from
G, P and K. In the closed-shell case, the P integral form is the best even in
spatially extended systems. Because the process to obtain K from G needs
laborious index manipulations [15] and cannot be vectorized, we had better
Obtain K from K integrals instead of G. On the other hand, in the MO integral
(four-index) transformation, the "full" G integrals are needed; however, the
"full" G integrals are obtained from the "full" P K file based on G~qrs =

Ppqrs q- Kpqrs/4 easily and fast so long as the same index vector R S is used for
the P and K integrals as shown in Fig. 7, where the Gpqrs integrals are preprocessed
when p = q, r = s and /or p q - - r s [22] and all the loops are automatically vec-
torized.

5. Vectorization of Fock matrix generation and CI matrix diagonalization

Figure 8 shows the algorithms to generate the "skeleton" closed-shell Fock matrix
Fc over AOs from the canonically-ordered list [17] of nonredundant integrals in
the form of the AO-based "purged" P K file, where Dc is the one-electron density
matrix for the closed shell after doubling of the off-diagonal elements [10]. (The
"complete" AO-based Fock matrices can be obtained by filling out the "skeleton"
Fock matrices by the symmetrization procedure based on the Dacre scheme
[19, 20].) The real symmetric matrix elements of Fc and Dc are packed (linearized)
and stored as vectors. The code (8a) is for the use of the original form of P
integrals [17]. The code (8b) is for the use of a modified form of P integrals
which is often encountered in current SCF codes [10]; that is, Ppqrs is beforehand
divided by two when pq = rs in order to eliminate its double counting in the Fock
matrix generation. For vectorization of DO 110 in Fig. 8, the same Fock matrix

Strategies to vectorize conventional SCF-Cl algorithms 161

a Fock matrix for the original form of P integrals

DO 100 pq=l, Nao*(Nao+l)/2

read Npq
read Ppq, RS

Fcpq = Fc(pq)

*VOPT1ON VEC

DO 110 n=l, Npq

Fc(RS(n)) = Fc(RS(n)) + Dc(pq)
Fcpq = Fcpq

110 CONTINUE

Fc(pq) = Fcpq

100 CONTINUE

b Fock matrix for a modified form of P integrals

DO 100 pq=l, Nao*(Nao+l)/2

read Npq
read Ppq, RS

Fcpq = 0.0

*VOPTION VEC

DO 110 n=l, Npq

Fc(RS(n)) = Fc(RS(n)) + Dc(pq) *Ppq(n)
Fcpq = Fcpq + Dc(RS(n))*Ppq(n)

110 CONTINUE

Fc(pq) ~ Fc(pq)+Fcpq

100 CONTINUE

, Ppq(n)
+ Dc(RS(n)) * Ppq(n)

Fig. 8. Vectorization of closed-shell Fock matrix generation

e lements shou ld not be re fe renced by RS(n), n = l , Npq in Fc (RS(n)) at a given
pq combina t ion . This p r o p e r t y o f the index vector RS can be satisfied as descr ibed
in the p reced ing section. This guaran tee (a specia l c o m m a n d given by the
p rog rammer , for example , * V O P T I O N VEC in H I T A C S-810 and M-680H IAP)
is i nd i spensab le to forcing the vec tor iza t ion of the da ta storing loop by scat ter - type
indirect address ing with an index vector because any F O R T R A N compi le r cannot
know the contents o f the index vector in advance.

In the open-she l l case, mul t ip le Fock- l ike equat ions are needed . The open-she l l
S C F ca lcula t ions are classif ied as one or pa r t i t i oned (two, t h r e e , . . .) Hami l t on i an
methods , d e p e n d i n g on the n u m b e r of matr ices d i agona l i zed dur ing each i te ra t ion
[23]. Usual ly , the Fock- l ike equat ions are pa r t i t ioned and d i agona l i zed sequen-
t ia l ly to de te rmine the a m o u n t o f mixing be tween only the two shells (among
closed, vacant and one or more open shells) at a t ime; the whole PK integral
list is r ead once for each Fock- l ike equat ion. In o rde r to reduce the amoun t of

162 N. Kosugi

disk I /O, however, it may be advantageous to construct as many Fock-like
matrices simultaneously per one read of the integral file as available main storage
allows; for example, all of the Fock matrices at once, relating to the one Hamil-
tonian scheme. Most of the one Hamiltonian methods are more difficult in
reaching the self-consistent solution than the partitioned Hamiltonian methods
and require large MS (main storage) for treating multiple Fock and density
matrices. The convergence problem in the one Hamiltonian method has recently
been resolved on the basis of partially second-order energy expansions [23-25].
Furthermore, it would seem that the MS requirement of the one Hamiltonian
method is not so large in recent high-performance computers. Fig. 9 shows the
simultaneous "skeleton" Fock (-like) matrix generation for a system with two
open shells, where the density matrix (doubled in the off-diagonal part) and the
Fock matrix, Dc and Fc, are for the closed shell, Da, Fa, Db and Fb for the open
shells, a and b, and F A C T is a parameter to specify a multiplet. The MS
requirement for all the Fock and density matrices is 3 Nao 2 words; for example,
only 0.75 MW (mega words) even when Nao=500.

Figure 10 shows the kernel program of the Davidson-Liu method [26, 27] modified
by the present author [28] to obtain simultaneously several eigensolutions, either
the lowest ones or higher (interior) ones without knowledge of the exact lower
ones. This modification attains efficient use of memory space and reduction of
iteration cycles, arithmetic operations and I /O processings. In the kernel of the

read

Fcpq
Fapq
Fbpq

*VOPTION

DO 200 pq=l, Nao*(Nao+l)/2

read Npq
read Ppq, RS

Kpq

=Fc(pq)
=Fa(pq)
=Fb(pq)

VEC

DO 210 n=l, Npq

Kpq(n) =Kpq(n)*FACT

Fc(RS(n))=Fc(RS(n))+Dc(pq) *Ppq(n)
Fa(RS(n))=Fa(RS(n))+Da(pq) *Ppq(n)+Db(pq) *Kpq(n)
Fb(RS(n))=Fb(RS(n))+Db(pq) *Ppq(n)+Da(pq) *Kpq(n)
Fcpq =Fcpq +Dc(RS(n))*Ppq(n)
Fapq =Fapq +Da(RS(n))*Ppq(n)+Db(RS(n))*Kpq(n)
Fbpq =Fbpq +Db(RS(n))*Ppq(n)+Da(RS(n))*Kpq(n)

210 CONTINUE

Fc(pq) = Fcpq
Fa(pq) = Fapq
Fb(pq) =Fbpq

200 CONTINUE

Fig. 9. Vectorization of open-shell Fock matrix generation

Strategies to vectorize conventional SCF-CI algorithms 163

DO 300 P=I, Nci

read HP, Q, Np

IF(NP.GE.NV) then

DO 100 i=I, NV

ZPi =Z (P, i)

*VOPTION VEC
DO 110 n=I, NP
Z (Q(n), i)=Z (Q(n),i)+C(P,

110 zPi =zPi

z (P , i)=ZPi

100 CONTINUE

i)*HP(n)
+C(Q(n), i)*HP(n)

else

DO 201 i=I, NV
201 ZP(i)=Z (P ,i)

DO 210 n=I, NP
DO 200 i=I, NV
Z (Q(n),i)=Z (Q(n), i)+C(P,

200 ZP(i)=ZP(
210 CONTINUE

DO 202 i=I, NV
202 Z (P ,i)=ZP(i)

endif

i)*HP(n)
i)+C(Q(n), i)*HP(n)

300 CONTINUE

Fig. 10. Vectorization of CI matrix diagonalization

modified Davidson-Liu method, Z = H . C, H is the Hamiltonian matrix of
dimension Nci and Ci's are the trial vectors for desired solutions (let their number
Nexact) and for approximate solutions which need not be obtained exactly
(Napprox) and /o r the correction vectors (Ncorr). N V is the number of vectors
(Nexact+Napprox, Ncorr, or Nexact+Napprox+Ncorr) to be treated simul-
taneously. Only the nonzero Hamiltonian matrix elements Hp o (lower triangle,
P>-Q) are stored in external storage in canonical order as P is fixed and Q runs
from 1 to P. NP is the number of nonzero elements for a specified P. DO 110
of Fig. 10 is basically the same as DO 110 of Fig. 8 in the Fock matrix generation.
The code (10) selects the innermost loop which produces the longer vector length
NP or NV. DO 110 uses the index vector Q for indirect addressing of nonzero
elements when NP>-NV; otherwise, DO 200 which loops over rows of Z and
C is selected. The latter type of addressing causes a serious paging problem in
virtual memory systems as in general-purpose computers, but no problem in
real-memory systems as in most of supercomputers. We have to pay attention,
however, to declaration of the row length of the two-dimensional arrays Z and
C so that DO 200 will not encounter memory-bank conflicts in addressing Z
or C.

164 N. Kosugi

6. Veetorization of four-index integral transformation

The present section concerns the four-index integral transformation from the
two-electron integrals Gpqrs's over AOs to the integrals V~jk~'s over MOs. We made
a comparison between the Bender algorithm [29], which was reviewed in more
comprehensive terms by Shavitt [12], and the previously-mentioned (section 2)
conventional "two-half" transformation [11], which has been well optimized for
vectorization by the Daresbury group (Saunders et al.) [16, 22].

Within the conventional "two-half" transformation formalism (See Sect. 2),
Saunders et al. [16, 22] have performed the innermost loops of all the four steps,
I, II, III and IV, over MOs, i, j, k and l (their loop lengths always equal the
number of MOs to take part in the transformation, Nmo) and employed the
Elbert loop structure [11] as the quadruple AO loops (that is, pq<-rs, p>-q and
r>-s). On the other hand, in the Bender algorithm [12, 29], steps I, II and I l l
are computed from all qrs combinations of Gvqrs to all / jk combinations of Upkj~
for a specified p and then, in step IV, V~kji's are summed up over all ijkl
combinations for the p' th AO. The Elbert loop structure over AOs can be
incorporated also into the Bender algorithm as shown in Fig. 11. The innermost
loop lengths of the modified Bender algorithm are Nmo for steps I and II,
Nmo2/2 for step III, and 3 N m o / 4 (average) and Nmo2/4 (average) for step IV;
the same for steps I and II as those of Saunders et al. [16, 22] and generally
larger for steps III and IV. In the Bender algorithm, the Elbert loop structure
over MOs is essential in step IV to enlarge the vector length up to 3 �9 Nmo/4;
otherwise, 3. Nmo/8 by the canonical MO loop structure. We have to pay
attention to declaration of the row length of the two-dimensional array Kp
so that DO 41 will not encounter memory-bank conflicts in addressing of
Kp(ij, l).

DO 10 of step I and DO 20 and 21 of step II are the same as the nonzero version
of conventional "two-half" transformation by Hegarty [30]. Furthermore, the
number of arithmetic operations in all the steps is just the same as that of the
conventional transformation algorithms [11,22] as shown in Table 3, where
the ratios of numbers of multiplications in the four steps (and step II' based on
the canonical AO loop structure: pq >-rs, p >-q, r > - s) are compared among various
conditions for Nmo, and a denotes the ratio of nonzero AO integrals. Table 3
shows that step IV is the most time-consuming when Nmo-=Nao [11, 22], but
that in using the canonical AO lo0p structure step II' becomes the most expensive
if 0.82>Nmo/Nao>0.375 a and that in using the Elbert AO loop structure step
II and step I the most expensive if 0.58>Nmo/Nao>0.75 oL and if N m o / N a o <
0.75 o~, respectively; that is, under usual conditions of a (-<0.2) and N m o / N a o
(-<0.5) for large systems, not step I but step II (or II') becomes the most
time-consuming. Although the Elbert AO loop structure is essential to reduce
the number of multiplications by half in the most time-consuming step II, use
of the canonical AO loop structure is desirable because we can generate the
canonically-ordered PK and G (AO) integrals without laborious sorting pro-
cedures, as demonstrated in Sect. 4 (Figs. 5-7). There is one approach, which

Strategies to vectorize conventional SCF-Cl algorithms 165

DO 100 p = l , Nao

DO 110 q = l , p

obtain Gpq, R, S, Mpq
DO 10 n = l , Mpq
DO 10 i= l , Nmo

10 Tpq(i, R(n))=Tpq(i, R(n))+Gpq(n)*X(i, S(n))

DO 20 r=p, Nao (r = l , p whenpq.GE.rs)
DO 20 i= l , Nmo
DO 20 j = l , Nmo

20 Ipq(j, i)=Ipq(j , i)+Tpq(i, r)*X(j, r)

DO 21 i= l , Nmo
DO 21 j = l , i

21 Jpq(i j)=Ipq(i , j)+Ipq(j , i)

DO 30 k = l , Nmo
DO 30 i j= l , N m o * (N m o + l) / 2

30 Up(ij, k)=Up(i j , k)+Jpq(ij)*X(k, q)

110 CO N T I N U E

DO 40 i = l , Nmo
DO 40 j = l , i

read Vij (i j : N m o * (N m o + l) / 2)

DO 41 k=i, Nmo
DO 41 l = l , k (l = j , k if k=i)

41 Vij(kl)=Vij(kl)+Kp(ij, k),X(1, p)+Kp(ij , 1)*X(k, p)

DO 42 Kl=ij , N m o * (N m o + l) / 2
42 Vij(kl)=Vij(kl)+Kp(kl, i)*X(j, p)+Kp(kl , j)*X(i , p)

write Vii

40 CONTINUE

100 CONTINUE

Fig. 11. Modified Bender algorithm for vectorization

Table 3. Ratio of numbers of multiplications for each step in the four-index transformation ~

Nmo / Nao
Net

Step cost Ratio 1 0.82 0.63 0.58 0.375 0.75a 0.375a

[oe Nao4Nmo/8 oz oe o~ a o~ c~ oe* a**
II Nao3Nmo2/6 ~ (Nmo/Nao) 1.33 1.09 0.84 0.77* 0.50* a* 0.50oe
III Nao2Nmo3/4 2 (Nmo/Nao)22 1.33 0.79 0.67 0.28 1.33a 2 0.28o: 2
IV Nao Nmo4/2 4 (Nmo/Nao)34 ** 2.18"* 1" 0.77* 0.21 1.69a 3 0.21a 3
II' Nad3Nmo2/3 ~ (Nmo/Nao) 2.67 2.18"* 1.68"* 1.54"* 1"* 2o~** c~**

a The inner AO loops over r of step II and step II' are based on the Elbert loop structure and the
canonical loop structure, respectively. ** and * denote steps with the maximum numbers of multiplica-
tions in all the steps and in the steps except II', respectively. In the algorithm (12a), the numbers of
multiplications for steps I" and II" are eeNao4Nmo/4 and Nao3Nmo2/6, respectively

166 N. Kosugi

is available only in the canonical AO loop structure to reduce the number of
multiplications of step II' by half; that is, the number of multiplications is the
same as that of step II based on the Elbert AO loop structure. This basic algorithm
(step I" and II") is shown in Fig. 12a. Although step I" doubles the number of
multiplications of step I, this is not so serious in case of small c~ and supercom-
puters to execute vector pipelines in parallel should execute DO 10 of Fig. 12a
(step r') in the same time as DO 10 of Fig. 11 (step J) so long as R(n)~S(n).
On the other hand, the innermost loop length of step II" is Nmo2/2, where we
should rearrange the index vectors I(ij) and J(ij) so as not to access consecutively
to the same memory addresses in Tpq(I(ij), r) and X(J(ij), r) (that is, so as not
to encounter memory bank conflicts). It should be noted that, when a = l and
Nmo=Nao, well-known algorithms based on the canonical loop structure
need at least 29 Nao5/24 multiplications [11], while the algorithm (12a)
needs 28 Nao5/24 multiplications in spite of using the canonical AO loop
structure.

The nonzero AO integrals Gpqr,'s for available rs with fixed pq are constructed
from the PK file just before being used in step I as discussed in Sect. 4 (Fig. 7).
Because the present PK file includes only nonredundant integrals after the Dacre
scheme [19, 20] as discussed in the Sects. 4 and 5, symmetrically redundant AO

a Efficient code for the canonical loop (step I" & II")

DO 10 n=l , Mpq
DO 10 i=l , Nmo
Tpq(i, R(n))=Tpq(i, R(n))+Gpq(n)*X(i, S(n))

10 Tpq(i, S(n))=Tpq(i, S(n))+Gpq(n)*X(i, R(n))

DO 20 r = l , p
*VOPTION VEC

DO 20 ij=l, Nmo*(Nmo+l)/2
20 Jpq(IJ(ij))=Jpq(IJ(ij))+Tpq(I(ij), r)*X(J(ij), r)

b When symmetrically redundant integrals are reproduced

DO 1 r= l ,Nao
1 blank(r)=.TRUE.

DO 2 n=l , Mpq
2 blank(R'(n))=.FALSE.

DO 10 n=l , Mpq
DO 10 i=l , Nmo

10 Tpq(i, R'(n))=Tpq(i, R'(n))+Gpq(n)*X(i, S'(n))

DO 20 r=l , Nao
IF(blank(r)) GO TO 20
DO 21 j= l , Nmo
DO 21 j= l , Nmo

21 Ipq(j, i)=Ipq(j, i)+Tpq(i, r)*X(j, r)
20 CONTINUE

Fig. 12. Further modified Bender algorithms

Strategies to vectorize conventional SCF-C1 algorithms 167

integrals must be recovered by index mapping with the AO correspondence table
for the four-index transformation. The algorithm to eliminate a symmetrically
redundant integral Gpqrs which is mapped from a nonredundant Gpqrs guarantees
that p_>p', [p, q]>_[p', q'] and [p, q]>-[r', s'] but does not guarantee that [p', q']>-
[r', s']. Although the number of multiplications is not affected by such integral
recovering, it should be noted that the canonical AO loop structure is not strictly
fulfilled; therefore, steps I and II are modified within the present scheme as
shown in Fig. 12b. It is most important to reduce the number of blank (r) which
is .FALSE. in DO 20 of the code (12b), so that it might sometimes be effective
to change R'(n) and S'(n) with each other, which is mapped from R(n) and S(n).

We now turn to the consideration of storage requirements of the Bender algorithm
[12, 29] and the conventional "two-half" transformation [11, 22]. Main storage
requirements of the Bender and the conventional "two-half" transformation
algorithms are dominated by Nmo3/2 words for the matrix Up and by Nao2/2
words for the matrix J~/, respectively. Usually Nmo> Nao 2/3 (5002/3=63), so that
the Bender algorithm requires more MS; when Nmo=150 and 200, Nmo3/2
equals 13 and 31 MB, respectively. Recent large-memory computers can afford
to accept these MS requirements. External storage requirements (except the G
file) of the Bender and the conventional transformation algorithms are for the V
file and the half-transformed integral J file, respectively, where the J file
(Nao2Nmo2/4 words) is always larger than the V file (Nmo4/8 words). A clear
disadvantage of the conventional transformation is that the I /O processing for
the J file cannot be eliminated, even if Nmo is small enough to keep the whole
V file in MS. On the other hand, no I /O processing is needed in the Bender
algorithm when the whole V file can be kept in MS; furthermore, even if the
whole V file cannot be kept in MS, the numbler of I /O processings of the V file
can be reduced by half (a four th , . . .) when two (four , . . .) matrices with Nmo3/2
words, Kp's, can be kept in MS. An advantage of the Bender algorithm is that
the storage requirement, main or external, is only dependent on Nmo and the
number of I /O processings is easily controllable depending on how many matrices
with Nmo3/2 words or how much the V file can be kept in MS. Of course, the
conventional "two-half" transformation [11, 22] is indispensable when Nmo is
too large to keep Nmo3/2 words in MS, and is more advantageous when Nmo
is too large to keep so many matrices with Nmo3/2 words or a greater part of
the V file and the I /O requirement of the J file (at least 2 Nao2Nmo2/4) becomes
much smaller than that of the V file (at most 2NaoNmo4/8). In many cases
symmetry blocking can reduce MS requirements, but that is not discussed here,
because it has not yet been completely optimized for vectorization,

7. Typical timings and discussion

The present author's SCF-CI program system named GSCF has been under
development for about a decade [8], and the current implementation GSCF3 [9]
is the result of many revisions to realize and vectorize the "new" conventional
SCF-CI algorithm proposed in Sect. 2 (Fig. 2): the reduction of I /O processing

168 N. Kosugi

by eliminating sorting routines and redundant integral files and by minimizing
the number of iterations in SCF and in CI, the treatment of only nonredundant
and nonzero integrals by using vectorizable indirect addressing form with index
vectors, and the program structure easily controllable depending on available
amounts of MS (main storage) and ES (extended storage). In the AO integral
evaluation, GSCF3 is carefully designed to select the most optimal one of the
four "extrinsic" vectorization codes (3a), (3b), (4a) and (4b) depending on
integral types (Figs. 3 and 4). An appropriate molecular symmetry and its AO
correspondence table of the Dacre scheme [19, 20] are automatically generated
out of D2h (7 reflection symmetries) and its subgroups without any input dat~i.
This accomplished by examining correspondence relations between AOs (Car-
tesian coordinates, angular quantum numbers, contraction coefficients, orbital
exponents) and overlap and one-electron integrals. Although it is very difficult
to determine an optimal AO integral storing form among G, GK and PK as was
discussed in Sect. 4, the canonically-ordered PK integrals are directly generated
in GSCF3 (Fig. 6), and used for vectorization of the Fock matrix generation
based on the one Hamiltonian method [25] (Figs. 8 and 9), and then internally
converted to the G integrals (Fig. 7) for the modified Bender algorithm of
four-index integral transformation (Figs. 11 and 12). In the SCF calculation,
symmetry-adapted initial-guess MOs are automatically generated, without any
symmetry specification [31], by using the AO correspondence table and an initial
guess of AO occupations. The symmetry-adapted Fock matrix is block-diagonal-
ized within each symmetry block. The Hamiltonian matrix generation program
is based on the determinant full-CI expansion [32], but has not yet been com-
pletely optimized for vectorization. The CI matrix diagonalization based on the
modified Davidson-Liu method [28] is fully vectorized (Fig. 10). The program
GSCF3 is registered as a library at the Computer Centre of the University of
Tokyo and at the Computer Center of the Institute for Molecular Science. The
following timing data were obtained by using the HITAC S-810/model 20 (super)
and M-280H and M-680H (general-purpose) installed at the Computer Centre
of the University of Tokyo.

Table 4 shows comparison of timings (CPU) among the program systems
GAUSSIAN 80 [33], HONDO [34], GSCF2 [8], GSCF3 [9] for the closed shell
SCF calculation of ethanol C2HsOH with 4-31G* basis functions. The scalar
processing unit of the supercomputer HITAC S-810 is just the same as that of
the general-purpose computer HITAC M-280H; that is, the S-810 is regarded as
an M-280H-based supercomputer. The scalar-adapted version GSCF2 is excellent
in speed compared with the GAUSSIAN 80 and the HONDO program systems.
The scalar processing time of GSCF3 (S-810/scalar) is a little larger than that
of GSCF2 (M-280H/scalar), because the vector-adapted version GSCF3 involves
overhead in initializing DO loops. This overhead is not so serious, less than 10%
in CPU time. The acceleration rates from vectorization on the S-810 are 2.6 in
the INT program (1.4 in the Pople-Hehre code, 3.0 in the Gauss-Rys code) and
6.0 in the SCF program; the high-performance vectorization, especially in SCF,
can be achieved by GSCF3 even for rather small molecules such as ethanol (only

Strategies to vectorize conventional SCF-C1 algorithms

Table 4. Comparison of CPU times (in seconds) in the integral evaluation (INT) and closed-
shell SCF for ethanol 4-31G* calculation (C s symmetry) by using the programs GAUSSIAN
80, HONDO, GSCF2 and GSCF3

169

Program Computer Mode INT SCF a Total

GAUSSIAN 80 M-280H Scalar 103.5 23.6 127.1
HONDO M-280H Scalar 92.7 31.0 123.7
GSCF2 M-280H Scalar 85.2 14.0 99.2
GSCF3 S-810 Scalar 91.8 b 14.9 106.7
GSCF3 S-810 Vector 35.9 ~ 2.5 38.4
GSCF3 M-680H Scalar 39.9 a 6.0 45.9

a In all the cases, the number of iterations is 12
b It takes 10.6 s and 79.1 s to evaluate sp [13] and spd [14] integrals, respectively
c 7.6 s for sp and 26.4 s for spd
d 4.4 S for sp and 34.4 s for spd

three primit ive d funct ions, N a o = 57). The H I T A C M-680H is the latest general-

purpose compute r manufac tu red by Hitachi. It is 2 . 2 - 3 . 0 and 2 . 5 - 4 . 0 times
faster in scalar and array (IAP) processings, respectively, than the M-280H.
A new mode l of supercompute r based on the H I T A C M-680H will be shipped
in late 1987. Using the new supercomputer , GSCF3 will be able to complete the

4-31G* e than calcula t ion within 15 s (I N T 14 s, SCF 1 s) in CPU time.

Table 5 shows CPU and elapsed (E) t ime compar i son in the kernel code (Sa) of
the Fock matr ix genera t ion shown in Fig. 8. The P integral file of storage amoun t
of 3 MB (4 byte per one integral or one index) is stored in any of external storage

(disk), extended storage (ES) and main storage (MS). Each one block (19 K B

fixed) of the P file is read into MS out of disk or ES, and is used in ari thmetic

operat ions of the Fock matrix generat ion. A substant ia l accelerat ion in the
computa t ion rate by vectorizat ion is a t ta ined in the ari thmetic operat ions (- 1 8
times faster, - 1 1 5 MFLOPS) . The value 115 MFLOPS is rather ideal; suppose

the init ial setup time for vectorizat ion is not taken into account , and recent
supercomputers can perform one gather opera t ion per 12 - 15 ns (2 clock cycles)

Table 5. CPU and elapsed time comparison in the kernel code (8a) of the Fock matrix generation
(Fig. 8) on the HITAC S-810/model 20 (times in seconds) a

(Data storage type) Disk ES MS
(Mode) Scalar Vector Scalar Vector Scalar Vector

Arithmetic op. (CPU 1) 0.234 0.013 0.241 0.013 0.238 0.013
Integral read (CPU 2) b 0.075 0.075 0.061 0.061 - - - -
Total CPU time (1+2) 0.309 0.088 0.302 0.074 0.238 0.013
Elapsed time 3.90 3.94 0.61 0.07 0.35 0.01

Elapsed/CPU 13 45 2 1 1.5 1
Elapsed/CPU 1 17 300 2.5 5 1.5 1

a The S-810 is operated in multi-tasking mode with 4 tasks
b CPU time required to read Npq, Ppq and RS (total 3 MB data)

170 N. Kosugi

and one scatter operation per 24 - 30 ns (4 clock cycles). Each one loop operation
of DO 110 in Fig. 8 (4 arithmetic operations, 2 Add and 2 Multiply) can be
executed theoretically in CPU times of only 2 4 - 3 0 ns (~ 150 MFLOPS) because
multiple vector pipelines can automatically execute both in parallel and in chained
operation mode in recent supercomputers (72 -90 ns per 20 operations, 10 Add
and 10 Multiply, as shown in DO 210 of Fig. 9 for the two-open shell case, i.e.
-250 MFLOPS). On the other hand, the CPU speed in reading the P integral
file is not enhanced and becomes the rate-determining step in the vectorized
program. The amount of CPU overhead involved in FORTRAN calls to the I/O
service routines is not reduced even if ES is employed instead of disk. The
FORTRAN I/O overhead in ES is 20% and 80% of CPU time in scalar and
vector processings, respectively. To reduce the FORTRAN I/O overhead, we
have to reduce the number of blocks of the P file, that is, to enlarge the block
size. Needless to say, the best way to avoid the FORTRAN I/O overhead is that
the whole integral file is stored in MS [35]. The optimization on GSCF3 using
ES is under way in order to obtain a higher transfer speed from ES to MS (up
to 1 GB in the S-810/model 20).

Once the CPU time in the SCF calculation has been reduced through vectorization,
the overall execution speed is heavily bounded by the I/O efficiency in the Fock
matrix generation, as matrix diagonalization is very highly vectorized (for
example, it takes only less than 1 s in CPU time to obtain all eigenvalues and
eigenvectors of a 300 x 300 real symmetric matrix), and symmetrization of the
"skeleton" Fock matrices and transformation from the AO-based Fock matrices
to the MO-based ones are very simple, inexpensive and, of course, highly vector-
ized procedures. In Table 5, the disk I/O speed is 0.76 MB/s and the CPU
requires data transfer speeds of 13 MB/s and 230 MB/s in scalar and vector
processings, respectively; the Fock matrix generation causes an exceptionally
serious mismatch between the CPU requirement for data supply and the perform-
ance of disk systems. Such terrible I/O bottleneck does encourage the use of
huge ES or MS to reduce the amount of disk I/O, but otherwise no need of high
CPU-performance computers, enhancement of CPU efficiency by vectorization
and optimization, nor employment of the canonically-ordered PK integral form.
On the Hamiltonian matrix diagonalization, it is again desirable to match the
CPU requirement for data supply to the performance of disk systems; however,
it is less serious because the CPU requirement for supply speed of nonzero
Hamiltonian matrix elements Hp o and its index Q (see Fig. 10) is - 20 MB/s for
a typical value of N V (-15) and is satisfied by executing multiple disk I/O
channels in parallel (of course, data transfer rate of ES is too enough).

Table 6 shows comparison of CPU times in the SCF-CI calculation for SiF4. The
relative performance of the INT and SCF programs by vectorization is improved
over the ethanol calculation, since the SiF4 system is larger than the 4-31G*
ethanol. The performance is improved as more d functions and more AOs are
used. Furthermore, the programs MOTR and DIAG achieve excellent acceleration
rates. The HMAT program has not yet been completely vectorized. Disk storage
may be used for the PK and V integral files because the MOTR and HMAT

Strategies to vectorize conventional SCF-C1 algorithms

Table 6. Comparison of CPU times (in seconds) in conventional

SCF-CI calculations for SiF4 a by using GSCF3 on the HITAC

S-810/model 20

Scalar Vector S/V

INT b 280.3 92.9 3.0

SCF ~ 24.3 3.4 g 7.1
MOTR d 714.7 42.1 17.0
HMATe 194.6 92.0 (2.1)
DIAG f 336.3 19.3 17.4

Total 1550.2 249.7 6.2

171

a Ta symmetry for MOs, C2v symmetry for integral evaluation
based on the Dacre scheme [20]
b Basis set: Si[5321/521/1], F[621/51/1], N a o = 79
c closed-shell SCF, 8 iterations
a N m o = 28
e N c i = 6 1 1 3

f Nexact = 15, Napprox = 0, Ncorr = 15, 13 iterations
g The FORTRAN I /O overhead is 2.3 s in CPU time (67%)

programs are CPU-bound. The CPU vs I /O performance in the DIAG program
is dependent on the problem, but using disk storage is roughly balanced under
a multi-tasking mode with 4 - 6 tasks (CPU time is 15 - 25%). In the total SCF-C1
calculation using GSCF3 on the HITAC S-810, the CPU speed in vector mode
is 6 times faster than in scalar mode. Table 7 shows CPU time comparison in
the SCF calculation for S/Ni5 as a model for hollow-site adsorption of S on Ni
(110) surface. The performance of the INT and SCF programs is still more
improved by vectorization. In the SCF step, the FORTRAN I /O overhead is
83% of CPU time and net arithmetic operation time is only 53 s. If the whole
integral file is stored in MS, we would achieve a surprising acceleration rate
reaching - 6 0 times (= (3417-261)/53) . On the other hand, in the SiF4 calcula-
tion, the FORTRAN I /O overhead is 67% and an acceleration rate in the net

Table 7. Comparison of CPU times (in seconds) in conventional
SCF calculations for SNis" by using GSCF3 on the HITAC
S-810/model 20

Scalar Vector S/V

INT b 9 255 2373 3.9
SCF ~ 3 417 314 d 10.9
Total 12 672 2687 4.7

a C2 ~ symmetry (a model for hollow-site adsorption of S on Ni
(110) surface)
bBasis set: S[5212111/411111/111], Ni[53321/5311/311];
overall (8 3 s / 1 7 7 p / 1 6 8 d) ; N a o = 218; disk space for the P and
index file and the K file are 425 MB and 199 MB, respectively
~ Closed-shell SCF, 41 iterations
o The FORTRAN I /O overhead is 261 s in CPU time (83%)

172 N. Kosugi

arithmetic operation is -20 . In any case, in the GSCF3 program system it is most
important to vectorize the AO integral evaluation program more effectively.

8. Conclusions

Experiences with conventional SCF-CI calculations on the HITAC S-810 show
that the present strategies for vectorization are satisfactory. As a result of some
experiences in rather large-scale SCF-CI computations (N a o = - 2 0 0 , N m o =

100, Nci = - 15000), the vector to scalar acceleration rates are summarized as
follows: 2 . 5 - 5 in INT, 5 - 1 2 in SCF, 1 5 - 3 0 in MOTR, - 2 in HMAT and
1 0 - 2 0 in DIAG, and overall 5 - 1 0 through SCF-CI. Although it took -0 .5
man-year to complete modifications and optimizations of the conventional SCF-
CI code, the resultant program system has high portability among high-perform-
ance computers, super or general-purpose, saving much time and money which
can be spent on applications to larger and more complicated systems or more
accurate molecular properties. Such achievements are supported by the recent
state-of-art technologies of hardware and software. To attain more acceleration
in the AO integral evaluation and the Hamiltonian matrix generation programs
are the next problems confronting the present author.

Acknowledgements. The author acknowledges the invitation to the Symposium on Computational
Chemistry and Parallel Processors held at University of Alberta (June 30-July 2, 1986) by Prof. S.
Huzinaga and Dr. M. Klobukowski, and the invaluable information exchange on the use of supercom-
puters at the symposium. Most of the described modifications on GSCF3 were designed while the
author was at Daresbury Laboratory in February 1984. He is grateful to Prof. K. Morokuma for the
chance to stay there by the Research Exchange Program between Japan and U.K. and to Dr. V.
Saunders for kindly discussing his and Guest's SCF code ATMOL and his and van Lenthe's CI code.
The author is indebted to Prof. A. Arima and Dr. Y. Karaki, the late chief director and staff of the
Computer Centre of the University of Tokyo, who made great efforts to facilitate large-scale computa-
tions, for financial support and priority in using the HITAC S-810/model 20. Finally, the author is
deeply thankful to Dr. J. S. Tse for reading the manuscript minutely and correcting the English, the
reviewers for many useful comments, and Prof. K. Ruedenberg for arranging this publication.

References

1. Lykos P, Shavitt I (1981) Supercomputers in chemistry, ACS symposium series 173. American
Chemical Society, Washington, DC

2. Burke PG, Delves LM (1982) The first international conference on vector and parallel processors
in computational science. Comput Phys Comm, vol 26. North-Holland, Amsterdam

3. Dykstra CE (1984) Advanced theories and computational approaches to the electronic structure
of molecules, vol 133. NATO ASI series. Reidel, Dordrecht

4. Ahlrichs R, Bohm H-J, Ehrhardt C, Scharf P, Schitter H, Lischka H, Schindler M (1985) J
Comput Chem 6:200

5. Duff IS, Reid JK (1985) The second international conference on vector and parallel processors
in computational science. Comput Phys Comm, vol 37. North-Holland, Amsterdam

6. Alml6f J, Faegri Jr K, Korsell K (1982) J Comput Chem 3:385; Alml6f J, Taylor PR, In: [3],
p 107

7. Roos BO (1972) Chem Phys Lett 15:153; Roos BO, Siegbahn PEM (1977) The direct configuration
interaction method from molecular integrals, In: Schaefer HF (ed) Modern theoretical chemistry,
vol. 3. Plenum, New York, p 277

Strategies to vectorize conventional SCF-CI algorithms 173

8. Kosugi N (1979) Centre news. Computer Centre, University of Tokyo, 11 [Suppl 2]:115; (1981)
ibid, 13 [no 12]:73; (1982) ibid, 14 [no 6]:20; (1982) ibid, 14 [no 7]:52; (1984), ibid, 16 [no 11]:56

9. Kosugi N (1984) Centre news. Computer Centre, University of Tokyo, 16 [no 7&8]:74; (1985)
ibid, 17 [no 3]:28; (1985) ibid, 17 [no 9&10]:90; (1985) Supercomputer Workshop Report, vol
4. Computer Center, Institute for Molecular Science, p 109; (1986) GSCF3 Program Manual
(SCF part). Computer Centre, University of Tokyo

10. Raf[enetti RC (1973) Chem Phys Lett 20:335
11. Elbert ST (1978) Four index integral transformation. In: Moler C, Shavitt I (eds) Numerical

algorithms in chemistry: algebraic methods. Lawrence Berkeley Laboratory 8158. University of
California, Berkeley, p 129

12. Shavitt I (1977) The method of configuration interaction. In: Schaefer HF (ed) Modern theoretical
chemistry, vol 3. Plenum, New York, p 189

13. Pople JA, Hehre WJ (1978) J Comput Phys 27:161
14. Dupuis M, Rys J, King HF (1976) J Chem Phys 65:111; King HF, Dupuis M (1976) J Comput

Phys 21:144
15. Guest MF, Wilson S (1981) The use of vector processors in quantum chemistry: experience in

the United Kingdom. In: [1], p 1
16. Saunders VR, Guest MF (1982) Applications of the Cray-1 for quantum chemistry calculations.

In: [2], p 389
17. Benard M, Speckel B (1982) Comput Chem 6:137
18. Ahlrichs R (1974) Theor Chim Acta 33:157
19. Dupuis M, King HF (1977) Int J Quantum Chem 11:613
20. Dacre PD (1970) Chem Phys Lett 7:47
21. Bair RA (1986) J Comput Chem 7:
22. Saunders VR, van Lenthe JH (1983) Mol Phys 48:923
23. Hsu HL, Davidson ER, Pitzer RM (1976) J Chem Phys 65:609; Davidson ER, Stenkamp LZ

(1976) Int J Quantum Chem Syrup 10:21
24. Guest MF, Saunders VR (1974) Mol Phys 28:819
25. Kosugi N, Kuroda H (1980) Chem Phys Lett 74:490
26. Davidson ER (1975) J Comput Phys 14:34; Davidson ER (1980) J Phys A13:L179
27. Liu B (1978) The simultaneous expansion method. In: Moler C, Shavitt I (eds) Numerical

algorithms in chemistry: algebraic methods. Lawrence Berkeley Laboratory 8158, University of
California, Berkeley, p 49

28. Kosugi N (1984) J Comput Phys 55:426
29. Bender CF (1972) J Comput Phys 9:547
30. Hegarty D (1984) Evaluation and processing of integrals. In: [3], p 39
31. Bagus PS, Wahlgren UI (1976) Comput Chem 1:95
32. Kosugi N (1980) On the matrix evaluation in the conventional full configuration interaction. In:

Ishiguro E (ed) Contributions from the research group on atoms and molecules, vol. 16.
Ochanomizu University, Tokyo, p 10

33. Binkley JS, Whiteside RA, Krishnan R, Seeger R, DeFrees D J, Schlegel HB, Topiol S, Kahn
LR, Pople JA (1980) QCPE 11:406

34. Dupuis M, Sprangler D, Wedolski JJ, NRCC QC01, GAMESS
35. Taylor P (1986) Quantum chemistry calculations using computers with very large central memories,

presented at the "Symposium on computational chemistry and parallel processors", Alberta

