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Recent high-performance computers, especially supercomputers, achieve very 
high-speed operations but bring about serious I /O problems in quantum 
chemical computations. Strategies to vectorize conventional SCF-CI 
algorithms are discussed relating to the I /O problems. The conventional 
SCF-CI algorithm which is proposed here reduces I /O processing by eliminat- 
ing all sorting routines and redundant integral files and generates directly 
nonzero and nonredundant  PK integrals with a vectorizable canonically- 
ordered list. The new implementation has been undertaken and successfully 
realized as a program system named GSCF3. The vector to scalar acceleration 
rate of GSCF3 on the HITAC S-810 are as follows: 2 . 5 - 5  in the AO integral 
evaluation, 5 - 1 2  in the SCF calculation, 1 5 - 3 0  in the four-index integral 
transformation, 1 0 - 2 0  in the CI matrix diagonalization, and overall 5 - 1 0  
through SCF-CI. 

Key words: Conventional S C F - C I - - I / O  bot t leneck--Vector izat ion of 
indirect addressing - -  Vectorizable canonically-ordered PK integrals - -  Four- 
index transformation 

1. Introduction 

The appearance of supercomputers (vector processors) has brought rapid growth 
of computational capabilities. Experience in adaptation of quantum chemical 
computations to the supercomputers is being accumulated in the quantum 
chemistry community [ 1-5]. The characteristics of these machines differ so much 
from those of  scalar machines that a thorough rethinking of the computational 
strategies is necessary. At this time the capabilities of  compilers converting 
effective scalar codes to effective vector codes are still severely limited. It is still 
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a crucial decision for quantum chemists developing highly-polished scalar codes 
whether or not to completely rewrite computer codes for supercomputers. 

Although recent computers, vector or scalar, attain very high-speed operations 
and enable very large-scale computations, handling of large data files is more 
cumbersome. It is because the word "speed" means CPU speed of arithmetic 
and logical operations and memory speed of cache memory (register) and main 
storage (MS, central or "core" memory), but does not mean channel speed in 
data transfer between MS and auxiliary storage (external disk systems) [1-3]. 
That is, algorithms which are designed with a great effort to well balance CPU 
and I/O times on today's computers will always be I/O bound on tomorrow's 
computers. 

There are some algorithms proposed to avoid the serious I/O problems in quantum 
chemical computations: direct SCF [6] and direct CI [7]. In the direct SCF 
approach [6], only the non-negligible two-electron integrals to the Fock matrix 
(or to changes in the Fock matrix) are re-evaluated in every SCF iteration. This 
approach has been primarily conceived for minicomputers with highly sophisti- 
cated CPUs but with much less developed I/O systems. It also enables very 
large-scale calculations using very extensive basis sets in which the storage of 
integrals in the conventional two-step (integral and SCF) procedure is prohibitive 
at any existing computer system. The same situation occurs in conventional CI 
calculations [7] as in conventional SCF calculations. The corresponding CPU 
bound and I/O bound steps are Hamiltonian matrix generation and iteratively 
solved matrix diagonalization, respectively. In the direct C! method, wavefunc- 
tions are constructed directly from molecular two-electron integrals without 
explicitly generating an intermediate Hamiltonian matrix. The above "direct" 
approaches have, however, several weak aspects. The direct SCF approach [6] 
is completely CPU-bound; therefore, the CPU requirement for the integral step 
is usually much larger than that for the SCF step (per iteration) and its effectiveness 
is heavily dependent on CPU and !/O performances inherent in available com- 
puter systems. In contrast, whatever type of computer we are using, the direct 
C! algorithm [7] is most promising. However, reduction of the configuration list 
based on individual configuration selection by perturbation theories on energy 
contributions and by restriction schemes on electron configuration types is not 
easily attained in the direct CI method without destroying the simple and 
inherently efficient matrix-multiplication structure. 

There are some bright outlooks for hardware and software technology to reduce 
or eliminate disk I/O [5]. The latest semiconductor technology has resulted in 
high-performance computer systems, vector or scalar, with huge main storage 
(MS, e.g. 2 GB (giga byte) in the CRAY 2) and huge storage (e.g. 3 GB in 
the HITAC S-810/model 20) connected with MS through high-speed channels 
(e.g. 1.3 GB/s in the NEC SX-2). The latter is called Solid State Device or "Disk" 
(SSD) or Extended Storage (ES). Then, I/O times can be easily reduced or 
eliminated through use of greater amounts of MS and/or ES instead of magnetic 
disk systems, though the savings depend on how critical the memory resources 
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are. Another approach to reduce the amount of I /O time is to perform the disk 
I /O concurrently with either computations or other I/Os. The former is asyn- 
chronous disk 1/O attained by rewriting so as to use double buffering, but is not 
effective to heavily I /O-bound jobs. The latter is parallel disk I /O (or disk stripe) 
which is attained by splitting a data file into several pieces on separate I /O 
channels and by processing the I /O channels concurrently. The parallel I /O 
technique can almost cope with heavily I /O-bound jobs, though total speed of 
the I /O channels is at most 50 MB/s ( - 3  MB/s • 16 parallel in the HITAC S-810 
and M-680H) at the present stage of technology. 

In the present work, a new implementation of"conventional"  SCF-CI algorithms 
is proposed for adaptation to recent high-performance computer systems, 
especially to supercomputers. In Sect. 2, a basic design of the "new" conventional 
SCF-CI approach proposed is discussed relating to 1/O problems brought about 
by the recent computers. In Sects. 3 and 5, vectorization of AO integral evaluation, 
Fock matrix generation and Hamiltonian matrix diagonalization are considered. 
In Sects. 4 and 6, how to arrange two-electron AO integrals into a canonically- 
ordered PK supermatrix and how to transform the four-index AO integrals to 
the MO integrals are proposed so as to satisfy the 'new' conventional SCF-CI 
formalism. In the last section, typical timings of the present algorithms on HITAC 
S-810 are shown and discussed. The computer program used has been under 
development for about a decade [8] and the current implementation is named 
GSCF3 [9]. 

2. A "new" conventional SCF-CI algorithm 

A typical example of flow charts for conventional SCF-CI programs is shown in 
Fig. 1. In the integral program INT, two-electron integral g.oqrs's are evaluated 
over contracted Gaussian-type basis functions (atomic orbitals, AOs) and are 
stored as the g file in external storage: To efficiently perform SCF calculations, 
the PK integral file is obtained by sorting and preprocessing an unordered AO 
integral list (the g file) [10]. Then, the PK file is read one or more times at every 
SCF iteration. 

To proceed beyond Hartree-Fock calculations, we have to obtain two-electron 

Fig. 1. A typical example of flow charts for ~ ~ ' J  
conventional SCF-CI programs, where circles ~ 
and rectangles denote data files and program 
parts, respectively I 

@ 

- - i  
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integrals V~jkt's over molecular orbitals X~'s (MOs) from the AO integrals Gpqrs'S 
through the following four partial summations: 

(I) Zpqri = ~'s OpqrsXis 
(II) Jpqji ~ ~r Zpqri Xjr 
(III) Upkji= •qJpqji Xkq 
(Iv) v kj, = xp vpkj, x , .  

In the current approaches [11], the four-index integral transformation consists 
of  two steps. The first t.wo-index transformation (MOTR1) Gmr , ~ Tmr ~ ~ JmJ~ 
(rs ~ j i )  for all p, q, i and j is followed by the second two-index transformation 
(MOTR2) Jpaji~ Upkj~ Vtkj~ (pq~  Ik) [11]. In advance of execution of MOTR1, 
we have to sort the unordered AO integral list of the g file into an ordered list 
suitable for MOTR1. In the resultant integrals Opq(rS) stored in the O integral 
file, pq is fixed and rs runs over AOs. Between MOTR1 and MOTR2, all the 
half-transformed integrals Jm)~'s are stored in external storage and transposed by 
sorting of  Jpq(ij) for all 0" with fixed pq to J~j(pq) for all pq with fixed (]. Using 
the MO integrals V~jjs, Hamiltonian matrix elements are constructed in the H 
file by the HMAT program. Finally, the Hamiltonian matrix is diagonalized to 
obtain eigensolutions. Matrix diagonalization problems are iteratively solved and 
the H file is read once at every iteration [12]. 

Through the conventional SCF-CI algorithms, we have to handle as many as 
seven huge integral files, though no more than two such files ever need to exist 
at the same time. The number of elements in the AO integral files, g, PK and G, 
is Nao4/8 where Nao denotes the number of basis functions in SCF (AOs), The 
number of elements in the intermediate files, Jpq and Jij, and in the MO integral 
file, V, are Nao2Nrno2/4 and Nmo4/8, respectively, where Nmo denotes the 
number of basis functions in CI (MOs). The number of elements in the H file 
is Nci2/2 where Nci denotes the dimension of the Hamiltonian matrix. Ideally 
the Jpq and Jij files and two of the three AO integral files are unnecessary and 
should be eliminated. Cumbersome file handlings and huge storage requirements 
by them come from the three sorting routines, SORT. In order to avoid I / 0  
bottlenecks which would be encountered in recent high-speed computers, we 
have to re-design a new "conventional" SCF-CI algorithm in which all the sorting 
routines are eliminated. 

An ideal "conventional" SCF-CI algorithm is shown in Fig. 2, where we have 
only to handle three disk files of AO integrals (the PK file), MO integrals (the 
V file) and Hamiltonian matrix elements (the H file). In the following sections, 
how to realize this "new" conventional SCF-CI algorithm is described and 
discussed from the viewpoint of vectorization. 

Fig. 2. A new algorithm for the conven- 
tional SCF-CI calculation proposed to 
overcome I/O bottlenecks brought 
about by recent "high-speed" computers 
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3. Veetorization of AO integral evaluation 

In this section, some considerations on the "extrinsic" vectorization algorithm 
for the AO integral evaluation by the Daresbury group (Saunders et al.) [15, 16] 
are described. 

The Pople-Hehre method [13] and the Gauss-Rys method [14] are widely 
employed for integration of s and p functions and of s, p and Cartesi~m d 
functions, respectively, using the batch (or shell) processing algorithm [13]. 
Saunders et al. have proposed the "extrinsic" vectorization algorithm [15, 16], 
in which the vector length of innermost loops is MUMAX, the number of nonzero 
integrals with different primitive combinations in a given integral batch. The 
"extrinsic" algorithm does not work so efficiently in vectorization of the Pople- 
Hehre method because of laborious preprocessing and FORTRAN overhead for 
vectorization (initializing DO loops). 

On the other hand, in the Gauss-Rys method, further refinements for the 
"extrinsic" vectorization can be achieved over the original algorithm [15, 16]. In 
Figs. 3 and 4, the "orthodox" and the vector-adapted kernels of the Gauss-Rys 
code are shown, respectively, where N is the number of the Gauss-Rys quadrature 
points, and NINT the dimension of one integral batch (the number of AO 
integrals to be evaluated simultaneously in one integral batch). In the orthodox 
code (3a), there are two algorithms shown; one is a simultaneous multiplication 
among the auxiliary integrals Xi, Yi and Zi, the other is a two-step multiplication. 
The latter has an advantage when M I N T  < NINT. For example, when MINT = 
1296, N I N T  = 10000, and all the basis functions belong to spd shells, the number 
of multiplications in the two-step algorithm (11 296) is about half of that in the 
simultaneous algorithm (20 000). Such a saving is also possible in the other 
orthodox code (3b) and the vector codes (4a) and (4b). It should be noted that 
main storage requirements can be reduced by replacing all the vectors of 
dimension 10 000 with those of dimension 1296 if neither pd nor spd shells are 
accepted (if the restriction of equal s, p and d exponents is removed). 

There is another orthodox code shown in Fig. 3b, which can reduce main 
storage requirement of TEMP drastically from 10 000 to only 5 (N = 5 when all 
the functions are of d, pd or spd type). In Figs. 4a, b, the orthodox codes (3a) 
and (3b) are modified for vectorization, respectively, where # denotes the number 
of auxiliary integrals with different primitive combinations to be evaluated concur- 
rently; in the code (4b), auxiliary integrals for different Gauss-Rys quadrature 
points as well as different primitive combinations are evaluated concurrently, 
though some additional preprocessings are needed for achieving this concurrency. 
The description of the codes in Fig. 4 is simplified for presentation; it is of course 
that DO 300 must account for the remainder using vector length less than # in 
the last loop. The case that # equals M U M A X  (or, sometimes, the optimal 
vector length depending on computer systems) is ideal but the maximum limit 
of # is dependent on available main storage. In the code (4b), # can be set 
larger than in the code (4a) because of less main storage requirements, and what 
is still better, the vector length of innermost loops can be set relatively long even 
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a Orthodox code 

dimension TEMP(10000), X(81), Y(81), Z(81), COEF(256) 
(XY(1296) ) 

NZ(IO000), NC(IO000), G(IO000) 
NX(IO000), NY(IO000) 

or MX(1296), MY(1296), MXY(1296), NXY(10000) 

DO 300 mu=I, MUMAX 

DO 100 i= l ,N  

(obtain Xi, Yi, Zi) 

DO 110 ng=I, NINT 
110 TEMP(ng)-TEMP(ng)+X(NX(ng))*Y(NY(ng))*Z(NZ(ng)) 

or 
DO 111 mg=I, MINT 

111 XY(MXY(mg)) = X(MX(mg))*Y(MY(mg)) 
DO 112 ng=I, NINT 

112 TEMP(ng) = TEMP(ng)+XY(NXY(ng))*Z(NZ(ng)) 

100 CONTINUE 

DO 200 ng=I, NINT 
200 G(ng) =G(ng)+COEF(NC(ng))*TEMP(ng) 

300 CONTINUE 

b Another orthodox code (an example when N=5) 

dimension : TEMPi, Xi(81),Yi(81),Zi(81) (XYi(1296) ) for all i 

DO 300 mu=I, MUMAX 

( obtain Xi, Yi, Zi sequentially for all i) 

DO 200 ng=I, NINT 

( obtain TEMPi=Xi(NX(ng))*Yi(NY(ng))*Zi(NZ(ng)) for alli) 
or XYi(NXY(ng))*Zi(NZ(ng)) 

200 G(ng)=G(ng)+COEF(NC(ng))*( TEMPI+TEMP2+TEMP3+TEMP4+TEMP5 ) 

300 CONTINUE 

Fig. 3. Some modifications of the "orthodox" Gauss-Rys codes 

when  M U M A X  is ra ther  small ,  that  is, basis  funct ions  are low con t rac ted  or  
par t ly  uncont rac ted .  W h e n  all the basis  funct ions  in one in tegra l  ba tch  are 
uncon t rac ted ,  we should  emp loy  the code  (3a) or  (3b). Both the codes  (3a) and  
(3b) in which  indirect  add res s ing  with the  index  vectors  is used in the  innermos t  
loops  are  vector ized;  however ,  thei r  vec tor iza t ion  is not  so efficient or, somet imes ,  
even coun te r -p roduc t ive  because  of  f requent  access to the same address  (memory  
bank  conflicts).  

4. Direct generation of a canonically-ordered PK integral file 

To sat isfy the " n e w "  conven t iona l  S C F - C I  formal i sm,  a canon ica l l y -o rde red  PK 
in tegral  ( supermat r ix)  file [17] is genera ted  di rec t ly  by  the AO integra l  eva lua t ion  
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a Vector-adapted code for (3a) 

dimension : TEMP(#, 10000), X(#, 81), Y(#, 81), Z(#, 81), COEF(#, 256) 
( XY(#, 1296) ) 

DO 300 mu=I, MUMAX,# 

DO 100 i=l ,N 

( obtain Xi, Yi, Zi concurrently for # primitives) 

DO 110 ng=I, NINT 
DO 110 rot=l,# 

110 TEMP(mt, ng)=TEMP(mt, ng)+X(mt, NX(ng))*Y(mt, NY(ng))*Z(mt, NZ(ng)) 
or XY(mt, NXY(ng))*Z(mt, NZ(ng)) 

100 CONTINUE 

DO 200 ng=I, NINT 
DO 200 rot=l,# 

200 G(ng)=G(ng)+COEF(mt, NC(ng))*TEMP(mt, ng) 

300 CONTINUE 

b Vector-adapted code for (3b) 

dimension : TEMP(5*#), X(5*#, 81), Y(5*#, 81), Z(5*#, 81), COEF(#, 256) 
(XY(5.#,1296) ) 

DO 300 mu=I, MUMAX,# 

( obtain Xi, Yi, Zi concurrently for # primitives & all i) 

DO 200 ng=I, NINT 
DO 110 nt=l,N*# 

110 TEMP(nt)=X(nt, NX(ng))*Y(nt, NY(ng))*Z(nt, NZ(ng)) 
or XY(nt, NXY(ng))*Z(nt, NZ(ng)) 

DO 200 mt=l ,#  
200 G(ng)=G(ng)+COEF(mt, NC(ng))*( TEMP(5*mt-4) 

* +TEMP(5*mt-3)+TEMP(5.mt-2 ) 
* +TEMP(5*mt- 1)+TEMP(5*mt )) 

300 CONTINUE 

Fig. 4. Vector-adapted Gauss-Rys codes 

program. First o f  all, to simplify its algori thm for presentation, an algorithm to 
evaluate AO integrals not  batch-wise but individually is shown in Fig. 5, where 
indices p, q, r and s denote  AOs, Nao the number  o f  AOs, and rs a canonically- 
ordered index [r, s] for packed symmetric  matrices ([a, b] = [b, a ] = a ( a -  1) /2+b,  
a>__b). The quadruple  AO loop structure, what  is called Meyer 's  loop structure 
(as quoted in ref. [18]), generates non redundan t  AO integrals Gpqrs , Gpsqr and 
@rq~ sequentially, where their trivial and non-trivial redundancies  are checked 
by the nature o f  identities between the four  labels p, q, r and s and by whether 
or not  a symmetry  opera t ion maps the four-AO label {pqrs} (p>-q>_r>-s) into a 
larger /smal ler  label {p'q'r's'} (rearranged in descending order),  respectively. The 
check whether  or  not {pqrs}<{p'q'r's'} can already be per formed part ly in the 
outer loops (p<p', {pq}<{p'q'}, {pqr}<{p'q'r'}) before all the indices p, q, r and 
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Fig. 5. 

DO 100 p=l ,  Nao 

DO 110 q = l , p  
DO 110 r = l , q  
DO 110 s = l , r  

( symmetry check for the AO quadruplet {pqrs}) 

evaluate Gpqrs 
evaluate Gpsqr if q.NE.r or (p.NE.q and r.NE.s) [case 1] 
evaluate Gprqs if q.NE.r and p.NE.q and r.NE.s [case 2] 
Kp(q, rs)=Gpsqr+Gprqs 
Pp (q, rs)=Gpqrs-Kp(q, rs)/4 
Kp(s, qr)=Gprqs+Gpqrs [case 1] 
Pp (s, qr)=Gpsqr-Kp(s, qr)/4 [casd 1] 
Kp(r, qs)=Gpsqr+Gpqrs [case 2] 
Pp (r, qs)=Gprqs-Kp(r, qs)/4 [case 2] 

110 CONTINUE 

( Here, we have PK integrals Pp(q, rs) & Kp(q, rs) 
in which q = l  t op  & rs.LE.pq) 

DO 120 q = l , p  

extract Ppq(rs) & Kpq(rs) from Pp(q, rs) & Kp(q, rs) 

Npq=0 
DO 121 rs=l ,pq  
IF(.NOT.SYM(rs).or.ABS(Ppq(rs))+ABS(Kpq(rs)).LY.eps) 
Npq=Npq+l  
RS(Npq) =rs 

121 CONTINUE 

Mpq=Npq 
DO 122 rs=l ,pq  
F(SYM(rs).or.ABS(Ppq(rs))+ABS(Kpq(rs)).LT.epa) GO 
Mpq=Mpq+l 
RS(Mpq)=rs 

122 CONTINUE 

IF(.NOT.SYM(pq)) Npq=0 

write Npq, Mpq 
write Ppq(RS(n)), RS(n), n=l ,  Mpq 
write Kpq(RS(n)) , n=l ,  Mpq 

120 CONTINUE 

100 CONTINUE 

SYM(rs) =.TRUE. if the r'th and s'th AOs belong to the same IR 
(except that the same AO contributes to different IRs) 

SYM(rs) =.FALSE. if not 

Direct generation of a canonically-ordered PK integral file 

GO 

TO 

TO 

122 

121 
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s are specified [18, 19]. Then, we can easily obtain PK integrals with non- 
redundant AO combinations among p, q, r and s as shown in Fig. 5, where the 
PK integrals must be divided by the number of symmetry operations which map 
pqrs into itself according to the Dacre scheme [19, 20]. When the inner three 
loops (DO 110) are completed for a specified p (DO 100), PK integrals PPqrs 
and Kpqr, are all obtained under the conditions that p>_q, r, s and the labels p, 
q, r and s are in canonical order (p>_q, r>-s, [p, q]>-[r, s]). We can pick up PK 
integrals PPqrs and Kpqrs in which pq is fixed and rs runs from 1 to pq (if there 
is no symmetry-redundancy). After checking whether or not any of the P and K 
integral sums exceeds a given threshold (eps), we can store in external storage 
only "nonzero"  and nonredundant  integrals with canonical indices RS at each 
pq combination of AO indices. Mpq denotes the number of the "full" P and K 
integrals to be stored for a specified pq combination, and Npq the number of 
the "purged" PK integrals where both the p ' th and q'th AOs and both the r 'th 
and s'th AOs are components of symmetry-adapted orbitals belonging t o  the 
same symmetry species (irreducible representation, IR), respectively, exclusive 
of the case that the same AO contributes to different IRs. The purged PK integral 
list is used in one-electron calculations (SCF) where one-electron operators (Fock 
and Fock-like operators, one-electron density matrices) should be totally sym- 
metric with respect to molecular symmetry. The full PK integral list must be 
used in beyond-HF calculations where two-electron operators play an important 
role. This purging is originally designed and very effective for the symmetry- 
adapted PK integrals [15] and is also effective to the AO-based PK integrals as 
has recently been demonstrated by Bair [21]. Only RS, Mpq and Npq are needed 
as indexing information for the integral labels. In the algorithm as is shown in 
Fig. 5, MS (main storage) of Nao 3 words is required for Pp and Kp when p = Nao; 
in practice, we have only to have MS of Nao 2 words for Ppq and Kpq for a 
specified q by storing Pp and Kp in a work file of Nao 3 words (at maximum). 

An algorithm to evaluate AO integrals batch-wise is shown in Fig. 6, where Nshell 
denotes the number of shells and indices P, Q, R and S denote labels of shells 
[13]. Meyer's loop structure [18] is applied to the loop over shells. A shell with 
a label P consists of AOs with AO labels p from pmin to pmax. Non-trivial 
redundancy in the integral evaluation due to molecular symmetry can be checked 
by the inequality relations between the original four-shell label {PQRS} and the 
labels {P'Q'R'S'} (rearranged in descending order) subject to symmetry 
operations within the framework of shell labels instead of AO labels. The check 
whether or not {PQRS}<{P'Q'R'S'} can beforehand be performed partly in the 
outer loops more cheaply than the check whether or not {pqrs}<{p'q'r's'} [19]. 
This shell structure is suited for use of the Dacre scheme [19, 20] to treat molecular 
symmetry. The integral batch is classified beforehand according to the nature of 
identities between the four shell labels as shown in Fig. 6. When the inner three 
loops (DO 110) are completed within a given P shell (DO 100), we have PK 
integrals Ppqrs and Kpqrs in which pq runs from [pmin, 1] to [pmax, pmax] and 
rs<--pq. The inside of DO 120 is the same as in Fig. 5 except a difference that we 
have to handle PK integrals with several p labels from pmin to pmax. This 
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DO 100 P=l, Nshell 

DO 110 Q=I,P 
DO 110 R=I,Q 
DO 110 S=I ,R 

AO members in a shell 

P : p=pmin, pmax 

Q: q=qmin, qmax 
R : r =rmin, rmax 
S :s =stain, smax 

( symmetry check for the shell quadruplet {PQRS}) 

evaluate one integral batch, 
which is classified according to the nature of identities 
between the four shell labels P, Q, R and S as follows: 

1 PQRS 
2 PQRR & PPRS 
3 PQQS 
4 PQQQ & pPPS 
5 PPQQ 
6 PPPP 

obtain one PK integral batch: P[PQRS] and K[PQRS] 

110 CONTINUE 

( Here, we have PK integrals P(pq, rs) & K(pq, rs), 
in which pq=[pmin, 1] to [pmax, pmax] & rs.LE.pq) 

DO 120 p=pmin, pmax 
DO 120 q= l ,p  

extract Ppq(rs) & Kpq(rs) from P(pq, rs) & K(pq, rs) 

( the same as in Fig. 5) 

120 CONTINUE 

100 CONTINUE 

Fig. 6. Batch-wise PK integral generation 

difference requires  greater  external  s torage for  s toring the integrals  in te rmedia te ly ,  
for  example ,  10 Nao 3 words  at m a x i m u m  when P=Nshell and  the P shell  is an 

spd shell  ( to ta l ly  10 funct ions) .  In  o rde r  to reduce  the external  s torage require-  
ments ,  we have only to ga ther  d, pd and spd shells at the lower  shell  numbers  
( labels)  and  s shells at the  h igher  ones;  work  space may  be  successful ly  r educed  
to Nao 3 words  at m a x i m u m .  Fur the rmore ,  we should  e l imina te  symmet r ica l ly  
r e d u n d a n t  rs pai rs  at the  lower  pq pairs  and  ga ther  n o n r e d u n d a n t  integrals  at 
the  h igher  ones  in o rde r  to achieve en la rgement  of  average vec tor  length Npq 
and  Mpq of  ind i rec t  address ing  with the index vector  RS. It  is a cri t ical  p rob l e m 
in the  fo l lowing  steps,  Fock  matr ix  genera t ion  and M O  integral  ( four - index)  

t r ans fo rmat ion .  

We now turn  to cons ider  which  integral  form of  the three  forms,  G only,  G and 
K (GK) and  PK, is the best  in storing and  comput ing .  Table  1 shows relat ive 
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Table 1. The relative memory requirement for storing nonzero integrals and their indices in the cases 
of dense and spatially-extended systems ~ 

Dense systems Extended systems 

Integral Index Total Integral Index Total 

G 3 3 6 1 1 2 
P 3 3 6 3 3 6 
K 3 3 6 2 2 4 
G K  6 3 ~ 9 3 3 e~ 6 

P K  b 6 3 ~ 9 5 3 ~ 8 

It is supposed that one integral Apqr, (A  = G, P or K)  and one index pair pq and rs need the same 
memory unit (e.g. one word length); for example, three integrals (Gpqr~; Gpsq~; Gp~q,) and three index 
pairs (pq and rs; ps and qr; pr  and qs) are stored for one pqrs combination of G integrals in dense 
systems, and one integral and one index pair are stored in extended ones 
b See Figs. 5 and 6 
~ The same index list is used for G and K or for P and K 
d The different index lists are used for G and K 

The index list for K can be included in that for P 

memory requirements for storing nonzero integrals and their indices in the cases 
of  dense and spatially-extended systems. In dense systems, three integrals with 
AO combinations of p, q, r and s are all nonzero (Qqr,, Gpsqr and Gprqs; Ppqrs, 
Ppsqr and Pprqs; Kpqrs, Kpsqr and Kprqs ). On the other hand, in spatially extended 
systems [15], only one of the three G integrals (apqrs) is nonzero when there is 
large overlap between p and q and between r and s but no (or near zero) overlap 
between the other AO pairs; therefore, K;qr, = Gpsqr+ G;rqs = 0. It is needless to 
say that storing G only is the best in memory requirement and I /O cost. In the 
Fock matrix generation, we must obtain Coulomb and exchange matrices J and 

Table 2. The relative operation number of additions and multiplications needed in obtaining 
d, K and 2 J - K  from G, P and K ~ 

File Dense Extended Vectorizable (O.K.) 
structure systems systems Unvectorizable (x)  

J G 6 2 O.K. 
f G  b 12 4 • 

K ~K 6 4 O.K. 
G b 18 6 O.K./x  ~ 

2 J -  K K d 12 6 O.K. 

6 6 O.K. 
G b 18 6 O.K. / •  c 

J & K G K  d 12 6 O.K. 

I P K  12 10 O.K. 

a Operation numbers of index manipulations, e.g. unpacking, are not counted in the table 
b The usual "purged" form, in which Gpqrs is purged when p and q (or r and s) belong 
to different I.R.s, is not accepted for constructing the K matrix 

c Vectorizable and unvectorizable for evaluations of J and K matrices, respectively 
The G and K integrals are used for evaluations of J and K matrices, respectively 



160 N. Kosugi 

read Mpq 
read Ppq, RS 
read Kpq 
DO 1 n=l ,  Mpq 
Gpq(n) = Ppq(n) + 0.25*Kpq(n) 

R(n) =indr(RS(n)) 
S(n) = RS(n)-R(n)*(R(n)- l) /2 

IF( p .EQ. q 
DO 2 n =1, Mpq 

2 

DO 3 
IF(R(n)  

3 IF( pq 

Gpq(n) =Gpq(n)*0.5 

then 

endif 
n=l ,  Mpq 
.EQ. S(n) Gpq(n) =Gpq(n)*0.5 
.EQ. RS(n) Gpq(n)=Gpq(n)*0.5 

where indr( r*(r-1)/2+s )=r, if r.GE.s ; R(n).GE.S(n) 

Fig. 7. How to obtain a canonically-ordered AO integrals G from the PK file 

K and, in the closed-shell case, 2 J - K  from one of the three integral files: "less 
purged" G, "fully purged" G K  or "fully purged" P K  for the closed-shell and 
dense systems. Storing of P only is the best in memory requirement, I /O cost 
and use of the purging technique for Table 2 shows relative operation numbers 
of additions and multiplications necessary in constructing J, K and 2 J  - K from 
G, P and K. In the closed-shell case, the P integral form is the best even in 
spatially extended systems. Because the process to obtain K from G needs 
laborious index manipulations [15] and cannot be vectorized, we had better 
Obtain K from K integrals instead of G. On the other hand, in the MO integral 
(four-index) transformation, the "full" G integrals are needed; however, the 
"full" G integrals are obtained from the "full" P K  file based on G~qrs = 

Ppqrs q- Kpqrs/4 easily and fast so long as the same index vector R S  is used for 
the P and K integrals as shown in Fig. 7, where the Gpqrs integrals are preprocessed 
when p = q, r = s and /or  p q - - r s  [22] and all the loops are automatically vec- 
torized. 

5. Vectorization of Fock matrix generation and CI matrix diagonalization 

Figure 8 shows the algorithms to generate the "skeleton" closed-shell Fock matrix 
Fc over AOs from the canonically-ordered list [17] of nonredundant  integrals in 
the form of the AO-based "purged" P K  file, where Dc is the one-electron density 
matrix for the closed shell after doubling of the off-diagonal elements [10]. (The 
"complete" AO-based Fock matrices can be obtained by filling out the "skeleton" 
Fock matrices by the symmetrization procedure based on the Dacre scheme 
[19, 20].) The real symmetric matrix elements of  Fc and Dc are packed (linearized) 
and stored as vectors. The code (8a) is for the use of the original form of P 
integrals [17]. The code (8b) is for the use of a modified form of P integrals 
which is often encountered in current SCF codes [10]; that is, Ppqrs is beforehand 
divided by two when pq = rs in order to eliminate its double counting in the Fock 
matrix generation. For vectorization of DO 110 in Fig. 8, the same Fock matrix 
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a Fock matrix for the original form of P integrals 

DO 100 pq=l, Nao*(Nao+l)/2 

read Npq 
read Ppq, RS 

Fcpq = Fc(pq) 

*VOPT1ON VEC 

DO 110 n=l,  Npq 

Fc(RS(n)) = Fc(RS(n)) + Dc(pq) 
Fcpq = Fcpq 

110 CONTINUE 

Fc(pq) = Fcpq 

100 CONTINUE 

b Fock matrix for a modified form of P integrals 

DO 100 pq=l, Nao*(Nao+l)/2 

read Npq 
read Ppq, RS 

Fcpq = 0.0 

*VOPTION VEC 

DO 110 n=l,  Npq 

Fc(RS(n)) = Fc(RS(n)) + Dc(pq) *Ppq(n) 
Fcpq = Fcpq + Dc(RS(n))*Ppq(n) 

110 CONTINUE 

Fc(pq) ~ Fc(pq)+Fcpq 

100 CONTINUE 

, Ppq(n) 
+ Dc(RS(n)) * Ppq(n) 

Fig. 8. Vectorization of closed-shell Fock matrix generation 

e lements  shou ld  not  be re fe renced  by RS(n), n = l ,  Npq in Fc (RS(n)) at a given 
pq combina t ion .  This p r o p e r t y  o f  the index vector  RS can be satisfied as descr ibed  
in the p reced ing  section. This guaran tee  (a specia l  c o m m a n d  given by the 
p rog rammer ,  for  example ,  * V O P T I O N  VEC in H I T A C  S-810 and M-680H IAP) 
is i nd i spensab le  to forcing the vec tor iza t ion  of  the da ta  storing loop  by  scat ter - type 
indirect  address ing  with an index vector  because  any F O R T R A N  compi le r  cannot  
know the contents  o f  the index  vector  in advance.  

In the open-she l l  case, mul t ip le  Fock- l ike  equat ions  are needed .  The open-she l l  
S C F  ca lcula t ions  are classif ied as one or  pa r t i t i oned  (two, t h r e e , . . . )  Hami l t on i an  
methods ,  d e p e n d i n g  on the n u m b e r  of  matr ices  d i agona l i zed  dur ing  each i te ra t ion  
[23]. Usual ly ,  the Fock- l ike  equat ions  are pa r t i t ioned  and  d i agona l i zed  sequen- 
t ia l ly to de te rmine  the a m o u n t  o f  mixing  be tween  only the two shells ( among  
closed,  vacant  and  one or  more  open shells) at a t ime; the whole  PK integral  
list is r ead  once for each Fock- l ike  equat ion.  In o rde r  to reduce  the amoun t  of  
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disk I /O,  however, it may be advantageous to construct as many Fock-like 
matrices simultaneously per one read of the integral file as available main storage 
allows; for example, all of the Fock matrices at once, relating to the one Hamil- 
tonian scheme. Most of the one Hamiltonian methods are more difficult in 
reaching the self-consistent solution than the partitioned Hamiltonian methods 
and require large MS (main storage) for treating multiple Fock and density 
matrices. The convergence problem in the one Hamiltonian method has recently 
been resolved on the basis of partially second-order energy expansions [23-25]. 
Furthermore, it would seem that the MS requirement of the one Hamiltonian 
method is not so large in recent high-performance computers. Fig. 9 shows the 
simultaneous "skeleton" Fock (-like) matrix generation for a system with two 
open shells, where the density matrix (doubled in the off-diagonal part) and the 
Fock matrix, Dc and Fc, are for the closed shell, Da, Fa, Db and Fb for the open 
shells, a and b, and F A C T  is a parameter to specify a multiplet. The MS 
requirement for all the Fock and density matrices is 3 Nao 2 words; for example, 
only 0.75 MW (mega words) even when Nao=500. 

Figure 10 shows the kernel program of the Davidson-Liu method [26, 27] modified 
by the present author [28] to obtain simultaneously several eigensolutions, either 
the lowest ones or higher (interior) ones without knowledge of the exact lower 
ones. This modification attains efficient use of memory space and reduction of 
iteration cycles, arithmetic operations and I /O processings. In the kernel of the 

read 

Fcpq 
Fapq 
Fbpq 

*VOPTION 

DO 200 pq=l, Nao*(Nao+l)/2 

read Npq 
read Ppq, RS 

Kpq 

=Fc(pq) 
=Fa(pq) 
=Fb(pq) 

VEC 

DO 210 n=l, Npq 

Kpq(n) =Kpq(n)*FACT 

Fc(RS(n))=Fc(RS(n))+Dc( pq ) *Ppq(n) 
Fa(RS(n))=Fa(RS(n))+Da( pq ) *Ppq(n)+Db( pq ) *Kpq(n) 
Fb(RS(n))=Fb(RS(n))+Db( pq ) *Ppq(n)+Da( pq ) *Kpq(n) 
Fcpq =Fcpq +Dc(RS(n))*Ppq(n) 
Fapq =Fapq +Da(RS(n))*Ppq(n)+Db(RS(n))*Kpq(n) 
Fbpq =Fbpq +Db(RS(n))*Ppq(n)+Da(RS(n))*Kpq(n) 

210 CONTINUE 

Fc(pq) = Fcpq 
Fa(pq) = Fapq 
Fb(pq) =Fbpq 

200 CONTINUE 

Fig. 9. Vectorization of open-shell Fock matrix generation 
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DO 300 P=I, Nci 

read HP, Q, Np 

IF(NP.GE.NV) then 

DO 100 i=I, NV 

ZPi =Z (P, i) 

*VOPTION VEC 
DO 110 n=I, NP 
Z (Q(n), i)=Z (Q(n),i)+C(P, 

110 zPi =zPi 

z (P , i)=ZPi 

100 CONTINUE 

i)*HP(n) 
+C(Q(n), i)*HP(n) 

else 

DO 201 i=I, NV 
201 ZP( i)=Z (P ,i) 

DO 210 n=I, NP 
DO 200 i=I, NV 
Z (Q(n),i)=Z (Q(n), i)+C(P, 

200 ZP( i)=ZP( 
210 CONTINUE 

DO 202 i=I, NV 
202 Z (P ,i)=ZP( i) 

endif 

i)*HP(n) 
i)+C(Q(n), i)*HP(n) 

300 CONTINUE 

Fig. 10. Vectorization of CI matrix diagonalization 

modified Davidson-Liu method, Z = H .  C, H is the Hamiltonian matrix of 
dimension Nci and Ci's are the trial vectors for desired solutions (let their number 
Nexact) and for approximate solutions which need not be obtained exactly 
(Napprox) and /o r  the correction vectors (Ncorr). N V  is the number of vectors 
(Nexact+Napprox,  Ncorr, or Nexact+Napprox+Ncorr)  to be treated simul- 
taneously. Only the nonzero Hamiltonian matrix elements Hp o (lower triangle, 
P>-Q) are stored in external storage in canonical order as P is fixed and Q runs 
from 1 to P. NP is the number of nonzero elements for a specified P. DO 110 
of Fig. 10 is basically the same as DO 110 of Fig. 8 in the Fock matrix generation. 
The code (10) selects the innermost loop which produces the longer vector length 
NP or NV. DO 110 uses the index vector Q for indirect addressing of nonzero 
elements when NP>-NV; otherwise, DO 200 which loops over rows of  Z and 
C is selected. The latter type of addressing causes a serious paging problem in 
virtual memory systems as in general-purpose computers, but no problem in 
real-memory systems as in most of supercomputers. We have to pay attention, 
however, to declaration of the row length of the two-dimensional arrays Z and 
C so that DO 200 will not encounter memory-bank conflicts in addressing Z 
or C. 
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6. Veetorization of four-index integral transformation 

The present section concerns the four-index integral transformation from the 
two-electron integrals Gpqrs's over AOs to the integrals V~jk~'s over MOs. We made 
a comparison between the Bender algorithm [29], which was reviewed in more 
comprehensive terms by Shavitt [12], and the previously-mentioned (section 2) 
conventional "two-half" transformation [ 11], which has been well optimized for 
vectorization by the Daresbury group (Saunders et al.) [16, 22]. 

Within the conventional "two-half" transformation formalism (See Sect. 2), 
Saunders et al. [16, 22] have performed the innermost loops of all the four steps, 
I, II, III and IV, over MOs, i, j, k and l (their loop lengths always equal the 
number of MOs to take part in the transformation, Nmo)  and employed the 
Elbert loop structure [11] as the quadruple AO loops (that is, pq<-rs, p>-q and 
r>-s). On the other hand, in the Bender algorithm [12, 29], steps I, II and I l l  
are computed from all qrs combinations of Gvqrs to all / jk combinations of Upkj~ 
for a specified p and then, in step IV, V~kji's are summed up over all ijkl 
combinations for the p' th AO. The Elbert loop structure over AOs can be 
incorporated also into the Bender algorithm as shown in Fig. 11. The innermost 
loop lengths of the modified Bender algorithm are Nmo for steps I and II, 
Nmo2/2 for step III, and 3 N m o / 4  (average) and Nmo2/4 (average) for step IV; 
the same for steps I and II as those of Saunders et al. [16, 22] and generally 
larger for steps III and IV. In the Bender algorithm, the Elbert loop structure 
over MOs is essential in step IV to enlarge the vector length up to 3 �9 Nmo/4;  
otherwise, 3. Nmo/8  by the canonical MO loop structure. We have to pay 
attention to declaration of the row length of the two-dimensional array Kp 
so that DO 41 will not encounter memory-bank conflicts in addressing of 
Kp( ij, l). 

DO 10 of step I and DO 20 and 21 of step II are the same as the nonzero version 
of conventional "two-half" transformation by Hegarty [30]. Furthermore, the 
number of arithmetic operations in all the steps is just the same as that of the 
conventional transformation algorithms [11,22] as shown in Table 3, where 
the ratios of numbers of multiplications in the four steps (and step II' based on 
the canonical AO loop structure: pq >-rs, p >-q, r > - s) are compared among various 
conditions for Nmo, and a denotes the ratio of nonzero AO integrals. Table 3 
shows that step IV is the most time-consuming when Nmo-=Nao [11, 22], but 
that in using the canonical AO lo0p structure step II' becomes the most expensive 
if 0.82>Nmo/Nao>0.375 a and that in using the Elbert AO loop structure step 
II and step I the most expensive if 0.58>Nmo/Nao>0.75  oL and if N m o / N a o <  
0.75 o~, respectively; that is, under usual conditions of a (-<0.2) and N m o / N a o  
(-<0.5) for large systems, not step I but step II (or II') becomes the most 
time-consuming. Although the Elbert AO loop structure is essential to reduce 
the number of multiplications by half in the most time-consuming step II, use 
of the canonical AO loop structure is desirable because we can generate the 
canonically-ordered PK and G (AO) integrals without laborious sorting pro- 
cedures, as demonstrated in Sect. 4 (Figs. 5-7). There is one approach, which 
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DO 100 p = l ,  Nao 

DO 110 q = l , p  

obtain Gpq, R, S, Mpq 
DO 10 n = l ,  Mpq 
DO 10 i= l ,  Nmo 

10 Tpq(i, R(n))=Tpq(i,  R(n))+Gpq(n)*X(i,  S(n)) 

DO 20 r=p,  Nao ( r = l , p  whenpq.GE.rs  ) 
DO 20 i= l ,  Nmo 
DO 20 j = l ,  Nmo 

20 Ipq(j,  i )=Ipq( j ,  i)+Tpq(i, r)*X(j, r) 

DO 21 i= l ,  Nmo 
DO 21 j = l , i  

21 Jpq( i j )=Ipq( i , j )+Ipq( j ,  i) 

DO 30 k = l ,  Nmo 
DO 30 i j= l ,  N m o * ( N m o + l ) / 2  

30 Up(ij, k)=Up(i j ,  k)+Jpq(ij)*X(k, q) 

110 CO N T I N U E  

DO 40 i = l ,  Nmo 
DO 40 j = l , i  

read Vij ( i j : N m o * ( N m o + l ) / 2  ) 

DO 41 k=i, Nmo 
DO 41 l = l , k  ( l = j , k  if k=i ) 

41 Vij(kl)=Vij(kl)+Kp(ij, k),X(1, p)+Kp(ij ,  1)*X(k, p) 

DO 42 Kl=ij ,  N m o * ( N m o + l ) / 2  
42 Vij(kl)=Vij(kl)+Kp(kl, i)*X(j, p)+Kp(kl , j )*X(i ,  p) 

write Vii 

40 CONTINUE 

100 CONTINUE 

Fig. 11. Modified Bender algorithm for vectorization 

Table 3. Ratio of numbers of  multiplications for each step in the four-index transformation ~ 

Nmo / Nao 
Net 

Step cost Ratio 1 0.82 0.63 0.58 0.375 0.75a 0.375a 

[ oe Nao4Nmo/8 oz oe o~ a o~ c~ oe* a** 
II Nao3Nmo2/6 ~ (Nmo/Nao) 1.33 1.09 0.84 0.77* 0.50* a*  0.50oe 
III Nao2Nmo3/4 2 (Nmo/Nao)22 1.33 0.79 0.67 0.28 1.33a 2 0.28o: 2 
IV Nao Nmo4/2 4 (Nmo/Nao)34 ** 2.18"* 1" 0.77* 0.21 1.69a 3 0.21a 3 
II' Nad3Nmo2/3 ~ (Nmo/Nao) 2.67 2.18"* 1.68"* 1.54"* 1"* 2o~** c~** 

a The inner AO loops over r of step II and step II' are based on the Elbert loop structure and the 
canonical loop structure, respectively. ** and * denote steps with the maximum numbers of  multiplica- 
tions in all the steps and in the steps except II', respectively. In the algorithm (12a), the numbers of 
multiplications for steps I" and II" are eeNao4Nmo/4 and Nao3Nmo2/6, respectively 
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is available only in the canonical AO loop structure to reduce the number of 
multiplications of step II' by half; that is, the number of multiplications is the 
same as that of step II based on the Elbert AO loop structure. This basic algorithm 
(step I" and II") is shown in Fig. 12a. Although step I" doubles the number of 
multiplications of step I, this is not so serious in case of small c~ and supercom- 
puters to execute vector pipelines in parallel should execute DO 10 of Fig. 12a 
(step r') in the same time as DO 10 of Fig. 11 (step J) so long as R(n)~S(n). 
On the other hand, the innermost loop length of step II" is Nmo2/2, where we 
should rearrange the index vectors I(ij) and J(ij) so as not to access consecutively 
to the same memory addresses in Tpq(I(ij), r) and X(J(ij), r) (that is, so as not 
to encounter memory bank conflicts). It should be noted that, when a = l  and 
Nmo=Nao, well-known algorithms based on the canonical loop structure 
need at least 29 Nao5/24 multiplications [11], while the algorithm (12a) 
needs 28 Nao5/24 multiplications in spite of using the canonical AO loop 
structure. 

The nonzero AO integrals Gpqr,'s for available rs with fixed pq are constructed 
from the PK file just before being used in step I as discussed in Sect. 4 (Fig. 7). 
Because the present PK file includes only nonredundant integrals after the Dacre 
scheme [19, 20] as discussed in the Sects. 4 and 5, symmetrically redundant AO 

a Efficient code for the canonical loop (step I" & II") 

DO 10 n=l ,  Mpq 
DO 10 i=l ,  Nmo 
Tpq(i, R(n))=Tpq(i, R(n))+Gpq(n)*X(i, S(n)) 

10 Tpq(i, S(n))=Tpq(i, S(n))+Gpq(n)*X(i, R(n)) 

DO 20 r = l , p  
*VOPTION VEC 

DO 20 ij=l,  Nmo*(Nmo+l)/2 
20 Jpq(IJ(ij))=Jpq(IJ(ij))+Tpq(I(ij), r)*X(J(ij), r) 

b When symmetrically redundant integrals are reproduced 

DO 1 r= l ,Nao  
1 blank( r )=.TRUE. 

DO 2 n=l ,  Mpq 
2 blank(R'(n))=.FALSE. 

DO 10 n=l ,  Mpq 
DO 10 i=l ,  Nmo 

10 Tpq(i, R'(n))=Tpq(i, R'(n))+Gpq(n)*X(i, S'(n)) 

DO 20 r=l ,  Nao 
IF(blank(r)) GO TO 20 
DO 21 j= l ,  Nmo 
DO 21 j= l ,  Nmo 

21 Ipq(j, i)=Ipq(j, i)+Tpq(i, r)*X(j, r) 
20 CONTINUE 

Fig. 12. Further modified Bender algorithms 
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integrals must be recovered by index mapping with the AO correspondence table 
for the four-index transformation. The algorithm to eliminate a symmetrically 
redundant integral Gpqrs which is mapped from a nonredundant Gpqrs guarantees 
that p_>p', [p, q]>_[p', q'] and [p, q]>-[r', s'] but does not guarantee that [p', q']>- 
[r', s']. Although the number of multiplications is not affected by such integral 
recovering, it should be noted that the canonical AO loop structure is not strictly 
fulfilled; therefore, steps I and II are modified within the present scheme as 
shown in Fig. 12b. It is most important to reduce the number of blank (r) which 
is .FALSE. in DO 20 of the code (12b), so that it might sometimes be effective 
to change R'(n) and S'(n) with each other, which is mapped from R(n) and S(n). 

We now turn to the consideration of storage requirements of the Bender algorithm 
[12, 29] and the conventional "two-half" transformation [11, 22]. Main storage 
requirements of the Bender and the conventional "two-half" transformation 
algorithms are dominated by Nmo3/2 words for the matrix Up and by Nao2/2 
words for the matrix J~/, respectively. Usually Nmo> Nao 2/3 (5002/3=63), so that 
the Bender algorithm requires more MS; when Nmo=150 and 200, Nmo3/2 
equals 13 and 31 MB, respectively. Recent large-memory computers can afford 
to accept these MS requirements. External storage requirements (except the G 
file) of the Bender and the conventional transformation algorithms are for the V 
file and the half-transformed integral J file, respectively, where the J file 
(Nao2Nmo2/4 words) is always larger than the V file (Nmo4/8 words). A clear 
disadvantage of the conventional transformation is that the I /O processing for 
the J file cannot be eliminated, even if Nmo is small enough to keep the whole 
V file in MS. On the other hand, no I /O processing is needed in the Bender 
algorithm when the whole V file can be kept in MS; furthermore, even if the 
whole V file cannot be kept in MS, the numbler of I /O processings of the V file 
can be reduced by half (a four th , . . . )  when two ( four , . . . )  matrices with Nmo3/2 
words, Kp's, can be kept in MS. An advantage of the Bender algorithm is that 
the storage requirement, main or external, is only dependent on Nmo and the 
number of I /O processings is easily controllable depending on how many matrices 
with Nmo3/2 words or how much the V file can be kept in MS. Of course, the 
conventional "two-half" transformation [11, 22] is indispensable when Nmo is 
too large to keep Nmo3/2 words in MS, and is more advantageous when Nmo 
is too large to keep so many matrices with Nmo3/2 words or a greater part of 
the V file and the I /O requirement of the J file (at least 2 Nao2Nmo2/4) becomes 
much smaller than that of the V file (at most 2NaoNmo4/8). In many cases 
symmetry blocking can reduce MS requirements, but that is not discussed here, 
because it has not yet been completely optimized for vectorization, 

7. Typical timings and discussion 

The present author's SCF-CI program system named GSCF has been under 
development for about a decade [8], and the current implementation GSCF3 [9] 
is the result of many revisions to realize and vectorize the "new" conventional 
SCF-CI algorithm proposed in Sect. 2 (Fig. 2): the reduction of I /O processing 
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by eliminating sorting routines and redundant integral files and by minimizing 
the number of iterations in SCF and in CI, the treatment of only nonredundant 
and nonzero integrals by using vectorizable indirect addressing form with index 
vectors, and the program structure easily controllable depending on available 
amounts of MS (main storage) and ES (extended storage). In the AO integral 
evaluation, GSCF3 is carefully designed to select the most optimal one of the 
four "extrinsic" vectorization codes (3a), (3b), (4a) and (4b) depending on 
integral types (Figs. 3 and 4). An appropriate molecular symmetry and its AO 
correspondence table of the Dacre scheme [19, 20] are automatically generated 
out of D2h (7 reflection symmetries) and its subgroups without any input dat~i. 
This accomplished by examining correspondence relations between AOs (Car- 
tesian coordinates, angular quantum numbers, contraction coefficients, orbital 
exponents) and overlap and one-electron integrals. Although it is very difficult 
to determine an optimal AO integral storing form among G, GK and PK as was 
discussed in Sect. 4, the canonically-ordered PK integrals are directly generated 
in GSCF3 (Fig. 6), and used for vectorization of the Fock matrix generation 
based on the one Hamiltonian method [25] (Figs. 8 and 9), and then internally 
converted to the G integrals (Fig. 7) for the modified Bender algorithm of 
four-index integral transformation (Figs. 11 and 12). In the SCF calculation, 
symmetry-adapted initial-guess MOs are automatically generated, without any 
symmetry specification [31], by using the AO correspondence table and an initial 
guess of AO occupations. The symmetry-adapted Fock matrix is block-diagonal- 
ized within each symmetry block. The Hamiltonian matrix generation program 
is based on the determinant full-CI expansion [32], but has not yet been com- 
pletely optimized for vectorization. The CI matrix diagonalization based on the 
modified Davidson-Liu method [28] is fully vectorized (Fig. 10). The program 
GSCF3 is registered as a library at the Computer Centre of the University of 
Tokyo and at the Computer Center of the Institute for Molecular Science. The 
following timing data were obtained by using the HITAC S-810/model 20 (super) 
and M-280H and M-680H (general-purpose) installed at the Computer Centre 
of the University of Tokyo. 

Table 4 shows comparison of timings (CPU) among the program systems 
GAUSSIAN 80 [33], HONDO [34], GSCF2 [8], GSCF3 [9] for the closed shell 
SCF calculation of ethanol C2HsOH with 4-31G* basis functions. The scalar 
processing unit of the supercomputer HITAC S-810 is just the same as that of 
the general-purpose computer HITAC M-280H; that is, the S-810 is regarded as 
an M-280H-based supercomputer. The scalar-adapted version GSCF2 is excellent 
in speed compared with the GAUSSIAN 80 and the HONDO program systems. 
The scalar processing time of GSCF3 (S-810/scalar) is a little larger than that 
of GSCF2 (M-280H/scalar), because the vector-adapted version GSCF3 involves 
overhead in initializing DO loops. This overhead is not so serious, less than 10% 
in CPU time. The acceleration rates from vectorization on the S-810 are 2.6 in 
the INT program (1.4 in the Pople-Hehre code, 3.0 in the Gauss-Rys code) and 
6.0 in the SCF program; the high-performance vectorization, especially in SCF, 
can be achieved by GSCF3 even for rather small molecules such as ethanol (only 
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Table 4. Comparison of CPU times (in seconds) in the integral evaluation (INT) and closed- 
shell SCF for ethanol 4-31G* calculation (C s symmetry) by using the programs GAUSSIAN 
80, HONDO, GSCF2 and GSCF3 
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Program Computer Mode INT SCF a Total 

GAUSSIAN 80 M-280H Scalar 103.5 23.6 127.1 
HONDO M-280H Scalar 92.7 31.0 123.7 
GSCF2 M-280H Scalar 85.2 14.0 99.2 
GSCF3 S-810 Scalar 91.8 b 14.9 106.7 
GSCF3 S-810 Vector 35.9 ~ 2.5 38.4 
GSCF3 M-680H Scalar 39.9 a 6.0 45.9 

a In all the cases, the number of iterations is 12 
b It takes 10.6 s and 79.1 s to evaluate sp [13] and spd [14] integrals, respectively 
c 7.6 s for sp and 26.4 s for spd 
d 4.4 S for sp and 34.4 s for spd 

three primit ive d funct ions,  N a o  = 57). The H I T A C  M-680H is the latest general- 

purpose  compute r  manufac tu red  by Hitachi. It is 2 . 2 - 3 . 0  and  2 . 5 - 4 . 0  times 
faster in  scalar and  array (IAP) processings, respectively, than the M-280H. 
A new mode l  of supercompute r  based on the H I T A C  M-680H will be shipped 
in late 1987. Using the new supercomputer ,  GSCF3 will be able to complete the 

4-31G* e than  calcula t ion within 15 s ( I N T  14 s, SCF 1 s) in CPU time. 

Table 5 shows CPU and  elapsed (E) t ime compar i son  in the kernel  code (Sa) of 
the Fock matr ix  genera t ion  shown in Fig. 8. The P integral file of storage amoun t  
of 3 MB (4 byte per one integral or one index) is stored in any of external  storage 

(disk), extended storage (ES) and  main  storage (MS). Each one block (19 K B  

fixed) of the P file is read into MS out of disk or ES, and is used in ari thmetic 

operat ions  of the Fock matrix generat ion.  A substant ia l  accelerat ion in the 
computa t ion  rate by vectorizat ion is a t ta ined in the ari thmetic operat ions  ( - 1 8  
times faster, - 1 1 5  MFLOPS) .  The value 115 MFLOPS is rather ideal; suppose 

the init ial  setup time for vectorizat ion is not  taken into account ,  and  recent 
supercomputers  can perform one gather opera t ion  per  12 - 15 ns (2 clock cycles) 

Table 5. CPU and elapsed time comparison in the kernel code (8a) of the Fock matrix generation 
(Fig. 8) on the HITAC S-810/model 20 (times in seconds) a 

(Data storage type) Disk ES MS 
(Mode) Scalar Vector Scalar Vector Scalar Vector 

Arithmetic op. (CPU 1) 0.234 0.013 0.241 0.013 0.238 0.013 
Integral read (CPU 2) b 0.075 0.075 0.061 0.061 - -  - -  
Total CPU time (1+2) 0.309 0.088 0.302 0.074 0.238 0.013 
Elapsed time 3.90 3.94 0.61 0.07 0.35 0.01 

Elapsed/CPU 13 45 2 1 1.5 1 
Elapsed/CPU 1 17 300 2.5 5 1.5 1 

a The S-810 is operated in multi-tasking mode with 4 tasks 
b CPU time required to read Npq, Ppq and RS (total 3 MB data) 
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and one scatter operation per 24 - 30 ns (4 clock cycles). Each one loop operation 
of DO 110 in Fig. 8 (4 arithmetic operations, 2 Add and 2 Multiply) can be 
executed theoretically in CPU times of only 2 4 - 3 0  ns (~ 150 MFLOPS) because 
multiple vector pipelines can automatically execute both in parallel and in chained 
operation mode in recent supercomputers (72 -90  ns per 20 operations, 10 Add 
and 10 Multiply, as shown in DO 210 of Fig. 9 for the two-open shell case, i.e. 
-250 MFLOPS). On the other hand, the CPU speed in reading the P integral 
file is not enhanced and becomes the rate-determining step in the vectorized 
program. The amount of CPU overhead involved in FORTRAN calls to the I/O 
service routines is not reduced even if ES is employed instead of disk. The 
FORTRAN I/O overhead in ES is 20% and 80% of CPU time in scalar and 
vector processings, respectively. To reduce the FORTRAN I/O overhead, we 
have to reduce the number of blocks of the P file, that is, to enlarge the block 
size. Needless to say, the best way to avoid the FORTRAN I/O overhead is that 
the whole integral file is stored in MS [35]. The optimization on GSCF3 using 
ES is under way in order to obtain a higher transfer speed from ES to MS (up 
to 1 GB in the S-810/model 20). 

Once the CPU time in the SCF calculation has been reduced through vectorization, 
the overall execution speed is heavily bounded by the I/O efficiency in the Fock 
matrix generation, as matrix diagonalization is very highly vectorized (for 
example, it takes only less than 1 s in CPU time to obtain all eigenvalues and 
eigenvectors of a 300 x 300 real symmetric matrix), and symmetrization of the 
"skeleton" Fock matrices and transformation from the AO-based Fock matrices 
to the MO-based ones are very simple, inexpensive and, of course, highly vector- 
ized procedures. In Table 5, the disk I/O speed is 0.76 MB/s and the CPU 
requires data transfer speeds of 13 MB/s and 230 MB/s in scalar and vector 
processings, respectively; the Fock matrix generation causes an exceptionally 
serious mismatch between the CPU requirement for data supply and the perform- 
ance of disk systems. Such terrible I/O bottleneck does encourage the use of 
huge ES or MS to reduce the amount of disk I/O, but otherwise no need of high 
CPU-performance computers, enhancement of CPU efficiency by vectorization 
and optimization, nor employment of the canonically-ordered PK integral form. 
On the Hamiltonian matrix diagonalization, it is again desirable to match the 
CPU requirement for data supply to the performance of disk systems; however, 
it is less serious because the CPU requirement for supply speed of nonzero 
Hamiltonian matrix elements Hp o and its index Q (see Fig. 10) is - 20  MB/s for 
a typical value of N V  ( -15)  and is satisfied by executing multiple disk I/O 
channels in parallel (of course, data transfer rate of ES is too enough). 

Table 6 shows comparison of CPU times in the SCF-CI calculation for SiF4. The 
relative performance of the INT and SCF programs by vectorization is improved 
over the ethanol calculation, since the SiF4 system is larger than the 4-31G* 
ethanol. The performance is improved as more d functions and more AOs are 
used. Furthermore, the programs MOTR and DIAG achieve excellent acceleration 
rates. The HMAT program has not yet been completely vectorized. Disk storage 
may be used for the PK and V integral files because the MOTR and HMAT 
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Table 6. Comparison of CPU times (in seconds) in conventional 

SCF-CI calculations for SiF4 a by using GSCF3 on the HITAC 

S-810/model 20 

Scalar Vector S/V 

INT b 280.3 92.9 3.0 

SCF ~ 24.3 3.4 g 7.1 
MOTR d 714.7 42.1 17.0 
HMATe 194.6 92.0 (2.1) 
DIAG f 336.3 19.3 17.4 

Total 1550.2 249.7 6.2 
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a Ta symmetry for MOs, C2v symmetry for integral evaluation 
based on the Dacre scheme [20] 
b Basis set: Si[5321/521/1], F[621/51/1], N a o  = 79 
c closed-shell SCF, 8 iterations 
a N m o  = 28 
e N c i = 6 1 1 3  

f Nexact = 15, Napprox = 0, Ncorr = 15, 13 iterations 
g The FORTRAN I /O  overhead is 2.3 s in CPU time (67%) 

programs are CPU-bound. The CPU vs I /O performance in the DIAG program 
is dependent on the problem, but using disk storage is roughly balanced under 
a multi-tasking mode with 4 - 6 tasks (CPU time is 15 - 25% ). In the total SCF-C1 
calculation using GSCF3 on the HITAC S-810, the CPU speed in vector mode 
is 6 times faster than in scalar mode. Table 7 shows CPU time comparison in 
the SCF calculation for S/Ni5 as a model for hollow-site adsorption of S on Ni 
(110) surface. The performance of the INT and SCF programs is still more 
improved by vectorization. In the SCF step, the FORTRAN I /O overhead is 
83% of  CPU time and net arithmetic operation time is only 53 s. If  the whole 
integral file is stored in MS, we would achieve a surprising acceleration rate 
reaching - 6 0  times (=  (3417-261)/53) .  On the other hand, in the SiF4 calcula- 
tion, the FORTRAN I /O  overhead is 67% and an acceleration rate in the net 

Table 7. Comparison of CPU times (in seconds) in conventional 
SCF calculations for SNis" by using GSCF3 on the HITAC 
S-810/model 20 

Scalar Vector S/V 

INT b 9 255 2373 3.9 
SCF ~ 3 417 314 d 10.9 
Total 12 672 2687 4.7 

a C2 ~ symmetry (a model for hollow-site adsorption of S on Ni 
(110) surface) 
bBasis set: S[5212111/411111/111], Ni[53321/5311/311]; 
overall ( 8 3 s / 1 7 7 p / 1 6 8 d ) ;  N a o  = 218; disk space for the P and 
index file and the K file are 425 MB and 199 MB, respectively 
~ Closed-shell SCF, 41 iterations 
o The FORTRAN I /O overhead is 261 s in CPU time (83%) 
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arithmetic operation is -20 .  In any case, in the GSCF3 program system it is most 
important to vectorize the AO integral evaluation program more effectively. 

8. Conclusions 

Experiences with conventional SCF-CI calculations on the HITAC S-810 show 
that the present strategies for vectorization are satisfactory. As a result of some 
experiences in rather large-scale SCF-CI computations ( N a o  = - 2 0 0 ,  N m o  = 

100, Nci  = -  15000), the vector to scalar acceleration rates are summarized as 
follows: 2 . 5 - 5  in INT, 5 - 1 2  in SCF, 1 5 - 3 0  in MOTR, - 2  in HMAT and 
1 0 - 2 0  in DIAG, and overall 5 - 1 0  through SCF-CI. Although it took -0 .5  
man-year to complete modifications and optimizations of the conventional SCF- 
CI code, the resultant program system has high portability among high-perform- 
ance computers, super or general-purpose, saving much time and money which 
can be spent on applications to larger and more complicated systems or more 
accurate molecular properties. Such achievements are supported by the recent 
state-of-art technologies of hardware and software. To attain more acceleration 
in the AO integral evaluation and the Hamiltonian matrix generation programs 
are the next problems confronting the present author. 
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